employee
employee
Russian Federation
employee
Russian Federation
High-grade gliomas are the most common type of primary brain tumor in adults. A distinctive feature of malignant gliomas is their high aggressiveness, resistance to various types of treatment, and high recurrence rate. Depending on the grade of malignancy, a relapse can occur in months or years, however, it is inevitable for almost all patients with this type of tumor. Despite the improvement of treatment methods, the problem of recurrence of malignant brain gliomas remains relevant: reoperation is associated with the risk of developing severe neurological deficits, and previous chemotherapy often leads to severe hematological toxicity. Thus, re-irradiation is seen as an effective treatment option for tumor recurrence. This review of the scientific literature examines various aspects of re-irradiation of high-grade gliomas, provides data on the features of diagnosis and treatment results in patients, as well as the frequency of complications.
high-grade brain gliomas, recurrence, proton therapy, reirradiation
1. Global, Regional, and National Burden of Brain and Other CNS Cancer, 1990–2016: a Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet. 2019;18;4:376-393.
2. Choynzonov Ye.L., Gribova O.V., Startseva Zh.A., Ryabova A.I., Novikov V.A., Musabayeva L.I., Polezhayeva I.S. Current Approaches to Chemoradiotherapy for Malignant Gliomas. Byulleten Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2014;13;3:119-125. https://doi.org/10.20538/1682-0363-2014-3-119-125 (In Russ.). [Choynzonov, E.L., Gribova, O.V., Starceva, Zh.A., Ryabova, A.I., Novikov, V.A., Musabaeva, L.I., Polezhaeva, I.S. Sovremennyy podhod k himioluchevoy terapii zlokachestvennyh gliom golovnogo mozga // Byulleten' sibirskoy mediciny. 2014. T.13, № 3. S. 119-125].
3. Verma V., Rwigema J.M., Malyapa R.S., Regine W.F., Simone C.B. 2nd. Systematic Assessment of Clinical Outcomes and Toxicities of Proton Radiotherapy for Reirradiation. Radiother Oncol. 2017;125;1:21-30. doi:10.1016/j.radonc.2017.08.005.
4. Seidensaal K., Harrabi S.B., Uhl M., Debus J. Re-Irradiation with Protons or Heavy Ions with Focus on Head and Neck, Skull Base and Brain Malignancies. Br. J. Radiol. 2020;93;1107:20190516. doi:10.1259/bjr.20190516.
5. Stupp R., Hegi M.E., Mason W.P., et. al., European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group. Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide Versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial. Lancet Oncol. 2009;10;5:459-466. doi: 10.1016/S1470-2045(09)70025-7. Epub 2009 Mar 9. PMID: 19269895.
6. Barney C., Shukla G., Bhamidipati D., Palmer J.D. Re-Irradiation for Recurrent Glioblastoma Multiforme. Chin Clin Oncol. 2017;6;4:36. doi:10.21037/cco.2017.06.18.
7. Conti A., Pontoriero A., Arpa D., et. al. Efficacy and Toxicity of CyberKnife Re-Irradiation and “Dose Dense” Temozolomide for Recurrent Gliomas. Acta Neurochir. (Wien). 2012;154:203–209. doi:10.1007/s00701-011-1184-1.
8. Grosu A.L., Weber W.A., Franz M., et.al. Reirradiation of Recurrent Highgrade Gliomas Using Amino Acid PET (SPECT)/CT/MRI Image Fusion to Determine Gross Tumor Volume for Stereotactic Fractionated Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005;63:511–519. doi:10.1016/j.ijrobp.2005.01.056.
9. Minniti G., Scaringi C., De Sanctis V., Lanzetta G., Falco T., Di Stefano D., Esposito V., Enrici R.M. Hypofractionated Stereotactic Radiotherapy and Continuous Low-Dose Temozolomide in Patients with Recurrent or Progressive Malignant Gliomas. J. Neurooncol. 2013;111:187–194. doi:10.1007/s11060-012-0999-9.
10. Kosztyla R., Chan E.K., Hsu F., et al. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained from Magnetic Resonance Imaging and 18F-FDOPA Positron Emission Tomography Delineations from Multiple Observers. Int. J. Radiat. Oncol. Biol. Phys. 2013;87;5:1100-1106. doi:10.1016/j.ijrobp.2013.09.008.
11. Kim B., Soisson E., Duma C., et.al. Treatment of Recurrent High Grade Gliomas with Hypofractionated Stereotactic Image-Guided Helical Tomotherapy. Clin. Neurol. Neurosurg. 2011;113:509–512. doi:10.1016/j.clineuro.2011.02.001.
12. Ogura K., Mizowaki T., Arakawa Y., Sakanaka K., Miyamoto S., Hiraoka M. Efficacy of Salvage Stereotactic Radiotherapy for Recurrent Glioma: Impact of Tumor Morphology and Method of Target Delineation on Local Control. Cancer Med. 2013;2:942–949. doi:10.1002/cam4.154.
13. Hundsberger T., Brügge D., Putora P.M., Weder P., Weber J., Plasswilm L. Re-Irradiation with and without Bevacizumab as Salvage Therapy for Recurrent or Progressive High-Grade Gliomas // J. Neurooncol. 2013;112:133–139. doi:10.1007/s11060-013-1044-3.
14. Xu Weilin, et al. The Performance of 11C-Methionine PET in the Differential Diagnosis of Glioma Recurrence. Oncotarget. 2017;8;53:91030-91039. doi:10.18632/oncotarget.19024
15. Kawai N., Okauchi, M., et.al. No Shinkei Geka. Neurological surgery. 2010;38;11:985–995.
16. Sharma Rajnish, et al. A Comparison Study of (11)C-Methionine and (18)F-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography Scans in Evaluation of Patients with Recurrent Brain Tumors. Indian Journal of Nuclear Medicine. 2016;31;2:93-102. doi:10.4103/0972-3919.178254.
17. Hotta M., Minamimoto R., Miwa K. 11C-Methionine-PET for Differentiating Recurrent Brain Tumor from Radiation Necrosis: Radiomics Approach with Random Forest Classifier. Sci. Rep. 2019;9;1:15666. doi:10.1038/s41598-019-52279-2.
18. Galldiks N., Dunkl V., Stoffels G., Hutterer M., Rapp M., Sabel M., et al. Diagnosis of Pseudoprogression in Patients with Glioblastoma Using O-(2-[(18)F]fluoroethyl)-l-Tyrosine PET. Eur. J. Nucl. Med. Mol. Imaging. 2015;42;5:685–695. Doi: 10.1007/s00259-014-2959-4.
19. Harat M., Małkowski B., Makarewicz R. Pre-Irradiation Tumour Volumes Defined by MRI and Dual Time-Point FET-PET for the Prediction of Glioblastoma Multiforme Recurrence: A Prospective Study. Radiother Oncol. 2016;120;2:241-247. doi:10.1016/j.radonc.2016.06.004.
20. Piroth M.D., Holy R., Pinkawa M., Stoffels G., Kaiser H.J., Galldiks N., et al. Prognostic Impact of Postoperative, Pre-Irradiation (18)F-Fluoroethyl-l-Tyrosine Uptake in Glioblastoma Patients Treated with Radiochemotherapy. Radiother Oncol 2011;99:218–24.
21. B Nanditha Sesikeran, Sayan Paul, Kanhu Charan Patro, Manoj K Gupta. Radiobiology of Re-irradiations. Journal of Current Oncology. 2018;1:35-39.
22. Mayer R., Sminia P. Reirradiation Tolerance of the Human Brain. Int. J. Radiat. Oncol. Biol. Phys. 2008;70:1350-1360.
23. Lawrence Y.R., Li X.A., el Naqa I., et al. Radiation Dose-Volume Effects in the Brain. Int. J. Radiat. Oncol. Biol. Phys. 2010;76(3 Suppl):S20-S27. doi:10.1016/j.ijrobp.2009.02.091.
24. Veninga T., Langendijk H.A., Slotman B.J., Rutten E.H., van der Kogel A.J., Prick M.J., Keyser A., van der Maazen R.W. Reirradiation of Primary Brain Tumours: Survival, Clinical Response and Prognostic Factors. Radiother Oncol. 2001;59;2:127-137.
25. Navarria P., Minniti G., Clerici E., et al. Re-Irradiation for Recurrent Glioma: Outcome Evaluation, Toxicity and Prognostic Factors Assessment. A Multicenter Study of the Radiation Oncology Italian Association (AIRO). J. Neurooncol. 2019;142;1:59-67. doi:10.1007/s11060-018-03059-x.
26. Combs S.E., Widmer V., Thilmann C., Hof H., Debus J., Schulz-Ertner D. Stereotactic Radiosurgery (SRS): Treatment Option for Recurrent Glioblastoma Multiforme (GBM). Cancer. 2005;104;6:2168-2173. doi: 10.1002/cncr.21429.
27. Cho K.H., Hall W.A., Gerbi B.J., Higgins P.D., McGuire W.A., Clark H.B. Single Dose Versus Fractionated Stereotactic Radiotherapy for Recurrent High-Grade Gliomas. Int. J. Radiat. Oncol. Biol. Phys. 1999;45;5:1133-1141. doi: 10.1016/s0360-3016(99)00336-3. PMID: 10613305.
28. Ernst-Stecken A., Ganslandt O., Lambrecht U., Sauer R., Grabenbauer G. Survival and Quality of Life After Hypofractionated Stereotactic Radiotherapy for Recurrent Malignant Glioma. J. Neurooncol. 2007;81;3:287-294. doi: 10.1007/s11060-006-9231-0. Epub 2006 Sep 20. PMID: 17031558.
29. Moller S., Law I., Munck Af Rosenschold P., et al. Prognostic Value of 18F-FET PET Imaging in Re-Irradiation of High-Grade Glioma: Results of a Phase I Clinical Trial. Radiother Oncol. 2016;121;1:132-137. doi:10.1016/j.radonc.2016.08.014.
30. Shen C.J., Kummerlowe M.N., Redmond K.J., et al. Re-Irradiation for Malignant Glioma: Toward Patient Selection and Defining Treatment Parameters for Salvage. Adv Radiat Oncol. 2018;3;4:582‐590. doi:10.1016/j.adro.2018.06.005.
31. Baehr A., Trog D., Oertel M., et al. Re-Irradiation for Recurrent Glioblastoma Multiforme: a Critical Comparison of Different Concepts. Strahlenther Onkol. 2020;196;5:457-464. doi:10.1007/s00066-020-01585-0.
32. Furlan C., Arcangeli S., Avanzo M., et al. Policies for Reirradiation of Recurrent High-Grade Gliomas: a Survey among Italian Radiation Oncologists. Tumori. 2018;104;6:466-470. doi:10.5301/tj.5000615
33. Combs S.E., Debus J., Schulz-Ertner D. Radiotherapeutic Alternatives for Previously Irradiated Recurrent Gliomas. BMC Cancer. 2007;7:167. doi:10.1186/1471-2407-7-167.
34. Grosshans D.R., Mohan R., Gondi V., Shih H.A., Mahajan A., Brown P.D. The Role of Image-Guided Intensity Modulated Proton Therapy in Glioma. Neuro Oncol. 2017;19(suppl_2):ii30-ii37. doi:10.1093/neuonc/nox002.
35. Dennis E.R., Bussiere M.R., Niemierko A., et al. A Comparison of Critical Structure Dose and Toxicity Risks in Patients with Low Grade Gliomas Treated with IMRT Versus Proton Radiation Therapy. Technol. Cancer Res. Treat. 2013;12;1:1-9. doi:10.7785/tcrt.2012.500276.
36. Mizumoto M., Okumura T., Ishikawa E., et.al. Reirradiation for Recurrent Malignant Brain Tumor with Radiotherapy or Proton Beam Therapy. Technical Considerations Based on Experience at a Single Institution. Strahlenther Onkol. 2013;189;8:656-663. doi: 10.1007/s00066-013-0390-6. PMID: 23824106.
37. Desai B.M., Rockne R.C., et.al. Toxicity Outcomes Following Large-Volume Re-irradiation Using Proton Therapy (PT) for Recurrent Glioma.
38. Galle J.O., McDonald M.W., Simoneaux V., Buchsbaum J.C. Reirradiation with Proton Therapy for Recurrent Gliomas. Int. J. Particle Ther. 2015;2:11–18.
39. Saeed A.M., Khairnar R., Sharma A.M., et al. Clinical Outcomes in Patients with Recurrent Glioblastoma Treated with Proton Beam Therapy Reirradiation: Analysis of the Multi-Institutional Proton Collaborative Group Registry. Adv. Radiat. Oncol. 2020;5;5:978-983. doi:10.1016/j.adro.2020.03.022.
40. Medvedeva K.E., Gulidov I.A., Mardynskiy Yu.S., Gogolin D.V., Semenov A.V., Lepilina O.G., Kaprin A.D., Kostin A.A., Ivanov S.A. Proton Therapy for Re-Irradiation of Recurrent Gliomas. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost - Medical radiology and radiation safety. 2019;2:70-74 (In Russ.). [Medvedeva K.E., Gulidov I.A., Mardynskiy Yu.S., Gogolin D.V., Semenov A.V., Lepilina O.G. Kaprin A.D., Kostin A.A., Ivanov S.A. Vozmozhnosti protonnoy terapii pri povtornom obluchenii recidivnyh gliom // Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2019. № 2. S. 70-74].
41. Scartoni D, Amelio D., Palumbo P., Giacomelli I., Amichetti M. Proton Therapy Re-Irradiation Preserves Health-Related Quality of Life in Large Recurrent Glioblastoma. J. Cancer Res. Clin. Oncol. 2020;146;6:1615-1622. doi:10.1007/s00432-020-03187-w.