employee from 01.01.2010 to 01.01.2020
Kazan, Kazan, Russian Federation
employee
Kazan, Kazan, Russian Federation
employee
Kazan', Kazan, Russian Federation
employee from 01.01.1998 to 01.01.2019
Kazan', Kazan, Russian Federation
from 01.01.2019 to 01.01.2020
Kazan, Kazan, Russian Federation
GRNTI 76.29 Клиническая медицина
OKSO 31.05.03 Стоматология
TBK 573 Клиническая медицина в целом
This article presents the results of mathematical modeling of the stress-strain state of the finite element analysis of the justification for the use of Humana Dental implants with an innovative surface microstructure and thread design parameters during dental implantation. As a result of the study, after placing the implants in the created three-dimensional model, consisting of trabecular and cortical bones, it was revealed that the angle of implant placement significantly affects the distribution of stress in the bone. The rough, well-structured surface improves the contact of the implant with the bone. The stress distribution on dental implants with different geometry and thread design was revealed, and the most effective thread parameters for uniform load distribution were determined. Aim. Substantiation of the use of Humana Dental implants with innovative macro-microstructure of the surface and thread design parameters during dental implantation in various clinical situations. Material and methods. Samples of BioSink and Vega implants from Humana Dental were studied to assess the stress distribution by mathematical modeling of the stress-strain state in the cortical and spongy bone surrounding two models of implants with a diameter of 4.2 mm and a length of 11.5 mm, as well as with a different thread shape design. The implants were installed in the created three-dimensional model strictly vertically and at an angle of 30°. Geometric models were built in CAD Catia V5, the calculation was carried out in the software package Ansys R19.2. Resalts. As a result of the study, it was revealed that in all cases the maximum concentration of stresses falls on the cortical layer of bone near contact with the implant, and in the spongy bone with vertical installation, maximum stresses in all cases are reached near the lower part of the implant. The peak voltage in the cortical bone was highest in the threaded part of the implants. When changing the angle of installation of the implant, the maximum voltages can increase many times, but when changing the thread pitch, only small fluctuations in voltages are noted, which do not fit into any trend. In the peri-implant region, the cortical bone showed a higher concentration of tension than the spongy bone. Conclusions. The use of finite element analysis made it possible to identify the stress distribution on dental implants with different thread geometries and designs and to determine the most effective thread parameters for uniform load distribution.
mathematical modeling, equivalent stresses, thread pitch and depth, abutment, implant, cortical and cancellous bone
1. Marco Annunzia, Luigi Guia. The effect of titanium surface modifications of dental implant osseointegration // Front Oral. – 2015;17:62-77. doi: 10.1159/000381694.
2. Rittel D., Dorogoy A., Shemtov-Yona K. Modeling the effect of osseointegration on dental implants pullout torque removal tests // Clinical Implant Dentistry and Relate Research. – 2018;86(2051):713-720. doi: 10.1111/cid.12645.
3. Laila Damiati, Marcus G. Fales, Angela H. Nobbs et al. Impact of surface of topography and coating on osteogenesis and bacterial attachment on titanium implants // Journal of Tissue Enginering. – 2018;9:1177-1186. doi: 10.1177/2041731418790694.
4. Macary C., Menhali A., Zammarie C. et al. Primary stability optimization by using fixtures with different thread depth loading implants // Material (Basel). – 2019;27;12:398-411. doi: 10.3390/ma12152398.
5. Tomas Albrektsson, Ann Wennenberg. On osseointegration on relation to implant surfaces // Clinical Implant Dentistry. – 2019;21;51:4-7. doi: 10.1111/cid.12742.
6. Mohanad Al-Sabbagh, Walied Eldomiaty, Yasser Khabbaz. Can osseointegration be achieved without primary stability // Dent Clin North Am. – 2019;63(3):461-473. doi: 10.1016/j.cden.2019.02.001.
7. Papez J., Dostalova T., Chleborad P. et al. Chronological aga as factor influencing the dental implant osseointegration in the jawbone // Prague Medical Report. – 2018;119:43-51. doi: 10.14712/23362936.2018.4.
8. Huang H.L.,Hsu J.T., Fun L.J., Tu M.G. et al. Bone stress and interfacial sliding analysis of implant design on an immediately loaded implant: A non -linear finite element study // J Dent. – 2008;36:409-417. doi: 10.1016/j.jdent.2008.02.015.
9. Wu S.W, Lee C.C, Fu P.Y., Lin. The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants // Med. Eng. Phys. – 2012;34:797-805. doi: 10.1016/j.medengphy.2011.09.021.
10. Abuhussein H., Pagni G., Rebaudi A., Wang H.L The effect of thread pattern upon implant osseointegration: Review // Clinical Oral Implants Research. – 2009;21;2:129-136. doi: 10.1111/j.1600-0501.2009.01800.x.
11. Faegh S., Muftu S. Load transferalong the bone-dental implant interface // Journal Biomechanics. – 2010;43:1761-1770. doi: 10.1016/j.jbiomech.2010.02.017.
12. Herekar M.G., Patil V.N. Mulani S.S. et al. The influence of thread geometry on biomechanical load transfer to bone: A finite element analysis comparing two implant thread design // Dent Res. J. (Isfahan). – 2014;11;4:489-494. https://pubmed.ncbi.nlm.nih.gov/25225563/
13. Fawad Javed, Hameeda Bashir Ahmed, Roberto Cresti et al. Role of primary stability for successful osseointegration of dental implants. Factors of influence and evaluation // Interventional Medicine and Applied Science. – 2013;5;4:162-167. doi: 10.1556/IMAS.5.2013.4.3.
14. Ryu H.S., Namgung C., Lee J.H., Lim Y.J. The influence of thread geometry on implant osseointegration under immediate loading: a literature review // J Adv Prosthodont. – 2014;6:547-554. doi: 10.4047/jap.2014.6.6.547.
15. Gaetano Marenzi, Glanrico Spagnuolo, Jone Amilla Sammartino et al. Micro-scae surface patterning of titanium dental implants by anodization in the presence of modifying salts // Materials (Basel). – 2019;12(11):1753-1764. doi: 10.3390/ma12111753.
16. Hamidreza Fattahi, Shbham Ajami, Nabavizadeh Rafsanjiani. The effects of different miniscrew thread designs and force directions on stress distribution by 3-dimensional finite element analysis // J Dent (Shiraz). – 2015;16(4):341-348. https://pubmed.ncbi.nlm.nih.gov/26636123/
17. Luigi Paracchini, Christian Barbieri, Mattia Redaelli et al. Finite element analysis of a new dental implant design optimized for the desirable stress distribution in the surrounding bone region // Prosthesis. – 2020;2(3):225-236. https://www.researchgate.net/publication/343843185_Finite_Element_Analysis_of_a_New_Dental_Implant_Design_Optimized_for_the_Desirable_Stress_Distribution_in_the_Surrounding_Bone_Region
18. Gerkle S.A. Importance of crown height ratios in dental implants on the fracture strength of different connection designs: an in vitro study // Clinical Implant Dentistry and Related Research. – 2015;17;4:790-797. doi: 10.1111/cid.12165.
19. Robau-Porrua Amanda, Perez-Rodriguez Yoan, Soris-Rodrigues Laura et al. The effect of diameter, lenhth and elastic modulus of a dental implant on stress and strain levels in peri-implant bone: 3D finite element analysis // Bio-Medical Materials and Engineering. – 2020;30;5-6:541-558. doi: 10.3233/BME-191073.
20. Sagniri M.A., Asatourian A., Garsia-Godoy F. The role of angiogenesis in implant dentistry part 1: review of titanium alloys, surface characteristics and treatment // Med Oral Patol. Oral Cir Bucal. – 2016;10:628-635. doi: 10.4317/medoral.21199.
21. Rupp F., Liang L., Geis-Gerstorfer J., Schideir I., Huttin F. Surface characteristics of dental implants: a review // Dental Mater. – 2018;34:40-57. doi: 10.1016/j.dental.2017.09.007.
22. Shan F.A., Thomsen P., Palmquist. Review of the impact of implants biomaterials on osteocytes // J Dent Res. – 2018;97:977-986. doi: 10.1177/0022034518778033.
23. Jinno Y., Jimbo R., Tovar., Taixeira H.H.S. In vivo evaluation of dual acid-etched and gritblasted/ acid- etched implants with identical microgeometry in high-density bone // Implants Dent. – 2017;26:815-819. doi: 10.1097/ID.0000000000000672.
24. Fabbro M.D., Tascieri S., Canciani, Addis S. Osteointegration of titanium implants with different rough surface: histologic and histomorphometric study in adult miniping model // Implant Dent. – 2017;28:357-366. doi: 10.1097/ID.0000000000000560.
25. Barfeie A.T., Wilson J., Rees J. Implant surface characteristics and their effect of osseointegration // British Dental Journal. – 2015;13(9):218-224. doi: 10.1038/sj.bdj.2015.171.
26. Oswal M.M., Amasi U.N., Oswal M.S., Bhagat A.S. Influence of three different implant thread design on stress distribution: a three-dimensional finite element analysis // J Indian Prosthodont. Soc. – 2016;16;4:359-365. doi: 10.4103/0972-4052.191283.
27. Shankar S., Gowthaman K., Raja G., Nirnala C., Satheesh Kumar N. Investigation on various thread designs materials for dental implants – a 3Dfinite element study // Trends in Biomaterials and artificial Organs. – 2016;2:100-105. https://www.biomaterials.org.in/tibao/index.php/tibao/article/view/198
28. Zhang G. Yuan H., Chen X., Wang W. et al. Three-dimensional finite element study on biomechanical simulation of various structured dental implants and their surrounding bone tissues // International Journal of Dentistry. – 2016;9:10-17. doi: 10.1155/2016/4867402.
29. Serkan Dudar, Tolga Topkaya, Murat Yavuz Solmaz et al. Finite element analysis of the stress distributions in peri-implant bone in modified and standard-threaded dental implants // Biotechnology Biotechnological equipment. – 2016;30:127-133. https://www.tandfonline.com/doi/full/10.1080/13102818.2015.1083887
30. Pei-Julin, Kuo-Chin Su. Biomechanical design application of the effect of different occlusion conditions on dental implants with different positions. A finite element analysis // Applied Sciences. – 2020;10:5826-5834. https://www.mdpi.com/2076-3417/10/17/5826
31. Vanegas-Acosta, Landinez P., Garzon-Alvarado D.A., Casal M.C. A finite element method approach for the mechanobiological modeling of osseointegration of a dental implant // Computer Methods and programs Biomedicine. – 2011;101;3:297-314. doi: 10.1016/j.cmpb.2010.11.007.
32. Luca Florillo, Marco Cicciu, Cesar D. Amico et al. Finite element method and von mises investigation on bone response to dynamic stress with a novel conical dental implant connection // Implant Dentistry: New Materials and Technological. – 2020;10:1155-1167. doi: 10.1155/2020/2976067.
33. Panahov N.A.O., Mahmudov T.G.O. Uroven' stabil'nosti zubnyh implantatov v razlichnye sroki funkcionirovaniya. Problemy stomatologii. 2018;14(1):89-93. [N.A.O. Panakhov, T.G.O. Makhmudov. The level of stability of dental implants in different periods of functioning. Actual problems in dentistry. 2018;14(1):89-93. (In Russ.)]. https://www.elibrary.ru/item.asp?id=32840697
34. Sysolyatin P.G., Gyunter V.E., Zheleznyy P.A., Zheleznyy S.P. Osteointegraciya razlichnyh implantatov pri peresadke kostnogo autotranpplantata v defekt nizhnem chelyusti v eksperimente. Problemy stomatologii. 2006;5-6:34-35. [P.G. Sysolyatin, V.E. Gunther, P.A. Zhelezny, S.P. Zhelezny. Osseointegration of various implants during transplantation of a bone autograft into a mandibular defect in an experiment. Actual problems in dentistry. 2006;5-6:34-35. (In Russ.)]. https://www.elibrary.ru/item.asp?id=32814578
35. Astashina N.B., Plyuhin D.V., Delec A.V. Prognozirovanie ishodov dental'noy implantacii na osnove izucheniya urovnya produktov okislitel'noy modifikacii belkov slyuny. Problemy stomatologii. 2017;13(3):47-52. [N.B. Astashina, D.V. Plyukhin, A.V. Delets. Predicting the outcomes of dental implantation based on the study of the level of products of oxidative modification of saliva proteins. Actual problems in dentistry. 2017;13(3):47-52. (In Russ.)]. https://www.elibrary.ru/item.asp?id=30109820