The functionality of information-measuring systems for remote detection of faulty parts of the undercarriage of cars in motion is considered. The features of the use of fiber-optic cables laid along the railway tracks as sensors for detecting defects in the rolling stock and infrastructure of railway lines are evaluated. The functional features of the influence of external physical influences impact on the length of the reflected wave fiber Bragg gratings. The possibility of using remote acoustic sensing to determine defects in parts and assemblies of rolling stock while the train is in motion is shown, the possibilities of joint application of the remote acoustic sounding technology with axle counters and a wheel passage registration system are noted. An assessment of the conditions for ensuring the operability and adjustment of a distributed fiberoptic line of sensors for a railway section is proposed. A scheme for the planned placement of remote acoustic sounding devices at the training ground of the Belarusian Railways has been developed. The possibility of immediate detection of defective wheelsets with a maximum allowable value of sliders exceeding 1.0 mm, as well as a break in the side frame of a wagon bogie to prevent dangerous emergencies, has been established. A method is proposed for continuous monitoring of the technical condition of rolling stock in motion, providing increased control over the serviceability of parts and units of the rolling stock.
rolling stock, railway lines, diagnostic systems, fiber optic cables, remote acoustic sensing, distributed fiber optic sensors, axle counters, fiber Bragg grating
1. Mironov, A.A. Perspektivnye napravleniya sovershenstvovaniya sredstv kontrolya KTSM-02 i ASK PS / A.A. Mironov // Avtomatika, svyaz', informatika. – 2009. – № 1. – S. 38-41.
2. Gondorov, V. A. Sovremennye sredstva diagnostiki podvizhnogo sostava na hodu poezda / V. A. Gondorov // Vagony i vagonnoe hozyaystvo. – 2017. – № 4. –S. 36-37
3. Nagovicyn, V. S. Kompleksnaya informacionno-izmeritel'naya sistema tehnicheskogo diagnostirovaniya podvizhnogo sostava / V. S. Nagovicyn, A. A. Kalmykov, V.I. Elfimov // Avtomatika, svyaz', informatika. – 1999. – № 10. – S. 46-48.
4. Burchenkov, V.V. Avtomatizaciya tehnicheskogo kontrolya i diagnostiki podvizhnogo sostava zheleznyh dorog: [monografiya] / V.V. Burchenkov; M-vo transp. i kommunikaciy Resp. Belarus', Belorus. gos. un-t transp. – Gomel': BelGUT, 2020. – 254 s.
5. Burchenkov, V. V. Sovershenstvovanie tehnologii raboty sortirovochnyh stanciy na osnove distancionnogo akusticheskogo zondirovaniya / V. V. Burchenkov // Visn. Dnipropetr. nac. un-tu zalizn. transp. im akad. V. Lazaryana. – Dnipro. – 2020. – № 1 (85). – S. 35-43. DOI: https://doi.org/10.15802/stp2020/199482.
6. Nikitin A.B., Kushpil' I.V. Rezul'taty issledovaniya tehnicheskih sredstv kontrolya celostnosti poezdov // Avtomatika na transporte. – 2020. – Tom 6. – №4. – S. 411-434. – DOI: 10.20295/2412-9186-2020-6-4-411-434.
7. Alyushina, S. G. Volokonnye reshetki Bregga s fazirovannoy strukturoy v raspredelennyh informacionno-izmeritel'nyh sistemah / S.G. Alyushina, P.E. Denisenko, O.G. Morozov [i dr.] // Nelineynyy mir. – 2011. – T. 9. – № 8. – S. 522-528.
8. Kunhua, W. Optimized synthesis of fiber Bragg gratings with triangular spectrum for wavelength-interrogation application / Kunhua Wen, Lianshan Yan, WeiPan // Optical Engineering. – 2011. – Vol. 50(5). – P. 054003-1-054004.
9. Othonos, A. Fiber Bragg gratings / A. Othonos // Review of Scientific Instrument. – 1997. – V. 68. – № 12. – P. 4309-4341.
10. Morozov, O.G Methodology of symmetric double frequency reflectometry for selective fiber optic structures / O.G. Morozov, D.L. Aybatov, V.P. Prosvirin, A.A. Talipov, O.G. Natanson // Proceedings of SPIE – The International Society for Optical Engineering. – 2008. –V. 7026. – P. 702601.
11. Rozenberger, M. Raspredelennoe akusticheskoe zondirovanie kak osnova dlya zheleznodorozhnyh prilozheniy / M. Rozenberger, A. Hall // Zheleznye dorogi mira. – 2016. – № 12 – S. 57-65.
12. Sistemy avtomatiki i telemehaniki na zheleznyh dorogah mira: uchebnoe posobie dlya vuzov zh.-d. transporta / Per. s angl.; pod red. G. Teega, S. Vlasenko. – M.: Intekst, 2010. – 496 s.
13. Bahtiyarova, E.A. Tehnologiya buduschego: raspredelennoe akusticheskoe zondirovanie DAS v rezhime real'nogo vremeni / E.A. Bahtiyarova, T.O. Chigambaev, K.M. Sansyzbay // «Innovacionnye tehnologii na transporte: obrazovanie, nauka, praktika», materialy XLI Mezhdunar. nauch.-prakt. konf., – KazATK im. M. Tynyshpaeva. – 2017. – S. 49-54.
14. Dmitriev, S.A. Innovacionnye volokonnye tehnologii dlya zheleznodorozhnogo transporta / S.A. Dmitriev // Transport Rossiyskoy Federacii. – 2016. – № 1 (62). – S. 26-27.
15. Baranov, L.A. Ocenki pogreshnosti i pomehoustoychivosti trakta analogo-cifrovogo preobrazovaniya v sistemah avtomaticheskogo kontrolya i upravleniya / L.A. Baranov // Elektrotehnika. – 2017. – № 9. – S. 29-36.
16. Baranov, L. A. Vliyanie ustroystv vyborki i hraneniya na tochnost' analogo-cifrovogo preobrazovaniya / L. A. Baranov // Avtomatika na transporte. – 2018. – Tom 4. – № 2. – S. 241-263.
17. Nikitin, A.B., Principy bezopasnogo sopryazheniya s ob'ektami v mikroprocessornyh sistemah zheleznodorozhnoy avtomatiki / A. B. Nikitin, A. N. Kovkin, V. A. Sokolov, N. A. Zhuravleva // Avtomatika na transporte. – 2019. – Tom 5. – №2. – S. 186-201. – DOI: 10.20295/2412-9186-2019-2-186-201.
18. Pohl, P. Volokonno-opticheskie datchiki na zheleznyh dorogah Germanii / P. Pohl, M. Schubert // Zheleznye dorogi mira. – 2017. – № 12. – S. 64-68.
19. Efremov, A. Vozmozhnosti primeneniya tehnologii DAS na zheleznyh dorogah Severnoy Ameriki / A. Efremov // Zheleznye dorogi mira. – 2019. – № 1. – S. 64-73.
20. Willis M. E., Barfoot D., Ellmauthaler A., Wu X., Barrios O., Erdemir C., Quinn D. Quantitative quality of distributed acoustic sensing vertical seismic profile data. The Leading Edge. - 2016. – Vol. 35. Iss. 7. – P. 562–648. DOI: https://doi.org/10.1190/tle35070605.1
21. Yao, J.P. Microwave photonics for high-resolution and high-speed interrogation of fiber Bragg grating sensors // Fiber and Integrated Optics. – 2015. – Vol. 34. – P. 230-242.