COMPLIANCE OF A FLAT JOINT OF FRACTAL SURFACES
Abstract and keywords
Abstract (English):
The work objective is to assess the compliance of a flat joint of fractal surfaces under load. The problem to which the paper is devoted is to assess the juxtaposition of fractal surfaces under load. Research methods: modeling of the contact interaction of the joint, analytical calculations. The novelty of the work: the bounds of applying models of contact interaction of surfaces (fractal and Hertz model) are defined and analyzed. Study results: the contact stiffness of flat surfaces joint for fractal models (plastic mode) and Hertz model (elastic mode) is defined, and the transfer point from one mode to another is found. Conclusions: with different roughness parameters, the joint compliance decreases with increasing load (increasing juxtaposition), and compliance under the same conditions increases with a decrease in roughness and an increase in fractal dimension D.

Keywords:
fractal, surface, contact stiffness, model, interaction, compliance
Text
Publication text (PDF): Read Download

Введение

 

Первичная поверхность отражает такие структурные особенности фрактальной поверхности, как наличие мелких локальных пиков, которые не могут быть выявлены после записи профилограмм, когда конечный радиус прибора после ощупывания поверхности приводит к формированию вторичной поверхности (профиля). Известные модели шероховатой поверхности представляют собой набор выступов в виде сферических сегментов (рис. 1). В частности, статистическая модель Гринвуда-Вильямсона [1] предполагает, что все выступы имеют один и тот же радиус скругления вершин микронеровностей r, а сами выступы деформируются упруго.

 

References

1. Greenwood J.A., Williamson J.B.P. Contact of nominally flat surfaces. Proceedings of the royal society A. 1966. V. 295(1442). P. 300-319.

2. Madzhumdar A., Bhushan B. Fraktal'naya model' uprugoplasticheskogo kontakta sherohovatyh poverhnostey. Sovremennoe mashinostroenie. Ser. B. 1991. №6. S.11-23.

3. Xu, K., Yuan Y., Chen J. The effects of size distri-bution functions on contact between fractal rough surfaces. Aip advances 8. 2018. V. 075317. P. 1-14.

4. Pohrt R., Popov V.L. Contact mechanics of rough spheres: crossover from fractal to hertzian behav-iors. Hindawi publishing corporation advances in tribology. 2013. V. 974178. P. 1-4.

5. Kuo X., Yuan Y., Jianjiang C. The effects of size distribution functions on contact between fractal rough surfaces. AIP Advances 8. 2018. V. 075317. P. 1-14.

6. Hanaor D.A., Gan Y., Einav I. Static friction at fractal interfaces. Tribology International. 2016. V. 93. P. 229-238.

7. Jackson R.L., Streator J.L. A multiscale model for contact between rough surfaces. Wear. 2006. V. 261(1112). P. 1337-1347.

8. Jackson R.L., Green I. A statistical model of elasto-plastic asperity contact be-tween rough surfaces. Tribology international. 2006. V. 9(39). P. 906-914.

9. Yan W., Komvopoulos K. Contact analysis of elas-tic-plastic fractal surfaces. Journal of applied phys-ics. 1998. V. 84(7). P. 3617.

Login or Create
* Forgot password?