employee
Space Research Institute RAS
Moscow, Russian Federation
Moscow, Russian Federation
The response of the lower ionosphere to the passage of several dozen typhoons has been studied using a regional network of VLF stations in the Russian Far East. The experimental data presented in all cases clearly demonstrates wavelike disturbances of the subionospheric VLF signal amplitude and phase during the active stage of typhoons crossing radio paths. With the exception of magnetoactive and seismoactive days, this means that the disturbances generated by a typhoon, when propagating into the upper ionosphere, pass through the lower ionosphere, causing corresponding disturbances in the amplitude and phase of the VLF signal. Spectral analysis shows that the range of the wave disturbances detected corresponds to the periods of atmospheric internal gravity waves (IGW). A mechanism of the action of IGWs on the lower ionosphere is proposed which allows us to interpret the VLF signal phase variations observed. According to this mechanism, the action of IGW on the lower ionosphere is caused by polarization fields arising during the wave motion of plasma in the lower part of the F layer. These fields projected along geomagnetic field lines into the lower ionosphere cause the upper wall of the Earth—ionosphere waveguide to rise or fall.
remote sensing by subionospheric VLF signals, atmospheric internal gravity waves, typhoons, ionosphere
1. Afraimovich E.L., Voyeikov S.V., Ishin A.B., Perevalova N.P., Ruzhin Yu.Ya. Total electron content variations during the powerful typhoon of August 5–11, 2006, near the southeastern coast of China. Geomagnetism and Aeronomy. 2008, vol. 48, no. 5, pp. 674–679. DOI: 10.1134/S0016793208050113.
2. Bertin F., Testud J., Kersley L. Medium scale gravity waves in the ionospheric F-region and their possible origin in weather disturbances. Planet. Space Sci. 1975, vol. 23, pp. 493–507.
3. Chou M.Y., Lin C.H., Yue J., Tsai H.F., Yang Yi Sun, Jann Yenq Liu, Chia Hung Chen. Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016). Geophys. Res. Lett. 2017a, vol. 44, iss. 3, pp. 1219–1226. DOI: 10.1002/2016GL072205.
4. Chou M.Y., Lin C.H., Yue J., Chang L.C., Ho-Fang Tsai, Chia-Hung Chen. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Lett. 2017b, vol. 44, iss. 15, pp. 7569–7577. DOI: 10.1002/2017GL073961.
5. Danilov A.D., Kazimirovsky E.S., Vergasova G.V., Khachikyan G.Ya. Meteorologicheskie effekty v ionosfere [Meteorological Effects in the Ionosphere]. Leningrad, Gidrometeoizdat Publ., 1987, 267 p. (In Russian).
6. Forbes J.M., Palo S.E., Zhang X. Variability of the ionosphere. J. Atmos. Solar-Terr. Phys. 2000, vol. 62, pp. 685–693. DOI: 10.1016/S1364-6826(00)00029-8.
7. Gershman B.N. Dinamika ionosfernoi plazmy [Ionospheric Plasma Dinamics]. Moscow, Nauka Publ., 1974, 262 p. (In Russian).
8. Haldoupis C., Shalimov S. On the altitude dependence and role of zonal and meridional wind shears in the generation of E region metal ion layers. J. Atmos. Solar-Terr. Phys. 2021, vol. 214, 105537. DOI: 10.1016/j.jastp.2021.105537.
9. Kozlov S.I. Aeronomiya iskusstvenno vozmushchennykh atmosfery i ionosfery [Aeronomy of artificially disturbed atmosphere and ionosphere of the Earth]. Moscow, Torus Press Publ., 2021, 268 p. (In Russian).
10. Rozhnoi A., Shalimov S., Solovieva M., Levin B., Hayakawa M., Walker S. Tsunami-induced phase and amplitude perturbations of subionospheric VLF signals. J. Geophys. Res. 2012, vol. 117, iss. A9, A09313. DOI: 10.1029/2012JA017761.
11. Rozhnoi A., Solovieva M., Levin B., Hayakawa M., Fedun V. Meteorological effects in the lower ionosphere as based on VLF/LF signal observations. Natural Hazards and Earth System Sciences. 2014a, vol. 14, iss. 10, pp. 2671–2679. DOI: 10.5194/nhess-14-2671-2014.
12. Rozhnoi A., Shalimov S., Solovieva M., Levin B., Shevchenko G., Hayakawa M., Hobara Y., Walker S.N., Fedun V. Detection of tsunami-driven phase and amplitude perturbations of subionospheric VLF signals following the 2010 Chile earthquake. J. Geophys. Res.: Space Phys. 2014b, vol. 119, iss. 6, pp. 5012–5019. DOI: 10.1002/2014JA019766.
13. Shalimov S.L., Rozhnoi A.A., Solov’eva M.S., Ol’shanskaya E.V. Impact of Earthquakes and Tsunamis on the Ionosphere. Izvestiya. Physics of the Solid Earth. 2019, vol. 55, iss. 1, pp. 168–181.
14. Sharkov E.A. Global Tropical Cyclogenesis. Springer Praxis Books, 2012, 604 p.
15. Suzuki S., Vadas S. L., Shiokawa K., Otsuka Y., Kawamura S., Murayama Y. Typoon-induced concentric airglow structures in the mesopause region. Geophys. Res. Lett. 2013, vol. 40, iss. 22, pp. 5983–5987. DOI: 10.1002/ 2013GL058087.
16. Vanina-Dart L.B., Pokrovskaya I.V., Sharkov E.A. Equatorial lower ionosphere reaction upon strong tropical disturbances. Geomagnetism and Aeronomy. 2008, vol. 48, no. 2, pp. 255–260. (In Russian).
17. Vanina-Dart L.B., Romanov A.A., Sharkov E.A. Influence of tropical cyclone upon the upper ionosphere according to tomographic sounding over Sakhalin in 2007. Geomagnetism and Aeronomy. 2011, vol. 51, no. 6, pp. 790–798. (In Russian).
18. Xiao Z., Xiao S.G., Hao Y.Q., Zhang D.H. Morphological features of ionospheric response to typhoon. J. Geophys. Res. 2007, vol. 112, iss. A4, A04304. DOI: 10.1029/2006JA011671.
19. Yasukevich Yu.V., Edemsky I.K., Perevalova N.P., Polyakova A.S. Ionospheric response upon helio- and geophysical disturbing factors according to GPS. Irkutsk: ISU Publ., 2013, 160 p. (In Russian).
20. Zakharov V.I., Kunitsyn V.E. Regional features of atmospheric manifestations of tropical cyclones according to ground based GPS network data. Geomagnetism and Aeronomy. 2012, vol. 52, no. 4, pp. 533–545. DOI: 10.1134/S0016793212040160.
21. URL: http://ultramsk.com (accessed May 20, 2022).
22. URL: http://www.gsras.ru/new/infres (accessed May 20, 2022).
23. URL: https://www.jma.go.jp/jma/indexe.html (accessed May 20, 2022).
24. URL: http://agora.ex.nii.ac.jp/digital-typhoon (accessed May 20, 2022).