Abstract. The purpose of the research is to identify the dependence of corn's yield and quality parameters on its vegetation conditions and assess the crop's productive potential in various soil and climatic zones of the Ural region. Scientific novelty. In contrasting soil and climatic zones on a comparable agrotechnical background, the factors limiting the size and quality of the corn harvest are determined. Methods. The initial data for the analysis were obtained in 2019-2021 by laying model sites in production crops of ultra-early corn hybrids. The research was carried out in five soil-climatic zones of the Southern and Middle Urals (mountain-forest zone, forest-meadow, northern forest-steppe, southern forest-steppe and steppe) on the territory of four subjects of the Federation in 16 geographical locations. Accounting for the biological harvest of corn was accompanied by its structural analysis with the allocation of fractions: stem, leaves, grain, rod, wrapper, cob leg and sampling for zootechnical analysis. Results. The maximum yield of corn grain and starch harvesting from 1 ha were provided by the conditions of the southern forest-steppe zone, which were characterized by the values of the hydrothermal coefficient from 0.8 to 1.0. Both increased moisture in the conditions of heat deficiency of the mountain-forest and forest-meadow zones and lack of moisture against the background of high heat supply of the steppe zone had a negative impact on the productivity and quality of the crop. The condition for improving the quality of the harvest and the collection of corn starch in the north of the region is the cultivation of hybrids with the earliest ripening belonging to the FAO group 100-120, as well as the use of advanced crop harvesting technologies that ensure the harvesting and preservation of wet grain and cobs without leaf-stem mass. To increase the productivity of corn in the steppe zone, it is necessary to select hybrids with reduced evapotranspiration, the use of moisture-saving agricultural technologies, the justification of agricultural techniques that allow to increase the efficiency of the use of atmospheric moisture.
corn, ultra-early hybrids, soil and climatic zones, heat and moisture resources, biological productivity, crop structure, exchange energy, starch
1. Nagibin A. E., Tormozin M. A., Zyryanceva A. A. Travy v sisteme kormoproizvodstva Urala. Ekaterinburg: OAO «IPP «Ural'skiy rabochiy», 2018. 784 s.
2. Hartings H., Lazzaroni N., Balconi C. Quality related traits of the maize (Zea mays L) grain: gene identification and exploitation // Maydica. 2013. Vol. 58. No. 3-4. Pp. 201–217.
3. Zezin N. N., Namyatov M. A. Belkovo-energeticheskiy koefficient kak pokazatel' effektivnosti otrasli kormoproizvodstva // Kormoproizvodstvo. 2019. № 6. S. 12–17. DOI: 10.25685/KRM.2019.2019.32187.
4. Berardo N., Mazzinelli G., Valoti P., Lagana P., Redaelli R. Characterization of maize germplasm for the chemical composition of the grain // Journal of Agricultural and Food Chemistry. 2009. Vol. 57. Pp. 2378–2384. DOI: 10.1021/jf803688t.
5. Panfilov A. E., Zezin N. N., Kazakova N. I., Namyatov M. A. Adaptive approach in maize breeding for the Urals Region // International Journal of Biology and Biomedical Engineering. 2020. Vol. 14. Pp. 55–62. DOI: 10.46300/91011.2020.14.9.
6. Gubin S. V., Loginova A. M., Getc G. V. Novye inbrednye linii kukuruzy Sibirskogo filiala Vserossiyskogo NII kukuruzy // Vestnik Omskogo gosudarstvennogo agrarnogo universiteta. 2021. № 2 (42). S. 33–40. DOI: 10.48136/2222-0364_2021_2_33.
7. Suprunov A. I., Petryakov A. P., Perevyazka D. S., Tereschenko A. A. Selekciya rannespelyh gibridov kukuruzy s bystroy otdachey vlagi zernom pri sozrevanii // Risovodstvo. 2019. № 4 (45). S. 19–24.
8. Orlyanskiy N. A., Orlyanskaya N. A. Ocenka kombinacionnoy sposobnosti novyh liniy kukuruzy evropeyskoy kremnistoy plazmy // APK Rossii. 2020. T. 27. № 4. S. 629–635.
9. Zezin N. N., Namyatov M. A. Rezul'taty vnedreniya zernovoy tehnologii vozdelyvaniya kukuruzy na Srednem Urale // Kormoproizvodstvo. 2018. № 3. S. 11–15. DOI: 10.25685/KRM.2018.2018.11695.
10. Vancetovic J., Ignjatovic-Micic D., Trbovic D., Delic N., Bozinovic S., Nikolic A., Kostadinovic M. Biochemical and physical kernel properties of a standard maize hybrid in different TopCross™ Blends // Scientia Agricola. 2017. Vol. 74. No. 6. Pp. 461–468. DOI: 10.1590/1678-992X-2016-0302.
11. Kahriman F., Akbulut Ş., Düz G., Songur U., Egesel C. Ö. Screening of genetic variability in Turkish maize landraces for protein and starch related traits [e-resource] // Maydica. 2020. Vol. 65. No. 1. URL: https://journals-crea.4science.it/index.php/maydica/article/view/2035/1266 (date of access: 12.01.2022).
12. Sofy S. O., Hamakareem H. F., Abdulla S. M., Sheikh, Ahmad K. R., Abdulla A. S., Omer D. A., Rahim D. A., Faraj J. M., Trojan V., Tahir N. A. Exploring chemical composition and genetic dissimilarities between maize accessions [e-resource] // Maydica. 2020. Vol. 65. No. 1. URL: https://journals-crea.4science.it/index.php/maydica/article/view/2050/1271 (date of access: 12.01.2022).
13. Demin E. A., Eremina D. V. Vliyanie mineral'nyh udobreniy i srokov poseva na urozhaynost' zelenoy massy kukuruzy v lesostepnoy zone Zaural'ya // Vestnik KrasGAU. 2020. № 10 (163). S. 27–33. DOI: 10.36718/1819-4036-2020-10-27-33.
14. Dar A. A., Choudhury A. R., Kancharla P. K., Arumugam N. The FAD2 gene in plants: Occurrence, regulation, and role [e-resource] // Frontiers in Plant Science. 2017. Vol. 8. Article number 1789. URL: https://www.frontiersin.org/articles/10.3389/fpls.2017.01789/full (data obrascheniya: 26.12.2021). DOI: 10.3389/fpls.2017.01789.
15. Zhao X., Wei J., He L., Zhang Y., Zhao Y., Xu X., Wei Y., Ge S., Ding D., Liu M., Gao S., Xu J. Identification of fatty acid desaturases in maize and their differential responses to low and high temperature [e-resource] // Genes. 2019. Vol. 10 (6). Article number 445. URL: https://pdfs.semanticscholar.org/4a01/f613f23bdd9cde7c19b2177be4ad301cb72a.pdf?_ga=2.145849140.1853357814.1647712271-1636624732.1641282245 (date of access: 16.01.2022). DOI: 10.3390/genes10060445.
16. Sotchenko V. S., Gorbacheva A. G., Panfilov A. E., Kazakova N. I., Vetoshkina I. A. Norma i stabil'nost' reakcii rannespelyh gibridov kukuruzy na usloviya vegetacii // Kormoproizvodstvo. 2020. № 4. S. 39–43. DOI: 10.25685/KRM.2020.2020.63669.
17. Akinwale R. O., Awosanmi F. E., Ogunniyi O. O., Fadoji A. O. Determinants of drought tolerance at seedling stage in early and extra-early maize hybrids [e-resource] // Maydica. 2017. Vol. 62. No. 1. URL: https://journals-crea.4science.it/index.php/maydica/article/view/1563/1073 (date of access: 19.10.2021).
18. Ao S., Russelle M. P., Varga T., Feyereisen G. W., Coulter J. A. Drought tolerance in maize is influenced by timing of drought stress initiation // Crop Science. 2020. Vol. 60 (3). Pp. 1591–1606. DOI: 10.1002/csc2.20108.
19. Nóia Júnior R. D. S., do Amaral G. C., Pezzopane J. E. M., Toledo J. V., Xavier T. M. T. Ecophysiology of c3 and c4 plants in terms of responses to extreme soil temperatures // Theoretical and Experimental Plant Physiology. 2018. T. 30. No. 3. Pp. 261–274. DOI: 10.1007/s40626-018-0120-7.
20. Il'in V. S., Loginova A. M., Gubin S. V., Getc G. V. Ekologicheskoe ispytanie novyh gibridov kukuruzy, sozdannyh s uchastiem omskih inbrednyh liniy, s ispol'zovaniem selekcionnyh indeksov // Uspehi sovremennogo estestvoznaniya. 2017. № 12. S. 61–65.
21. Li Y., Zhou K., Jiang M., Zhang B., Zou H., Aslam M. Assessment of drought tolerance based impacts with over-expression of zmltp3 in maize (Zea mays L.) // Cereal research communications. 2019. Vol. 47 (1). Pp. 22–31. DOI: 10.1556/0806.46.2018.062.
22. Demin E. A., Eremin D. I. Vliyanie mineral'nyh udobreniy na soderzhanie belka i krahmala v zerne kukuruzy, vyraschivaemoy v lesostepnoy zone Zaural'ya // Vestnik APK Stavropol'ya. 2018. № 2 (30). S. 130–133. DOI: 10.31279/2222-9345-2018-7-30-130-133.