MATHEMATICAL MODEL OF RADIATION ENERGY ABSORPTION BY MULTILAYER STRUCTURE AND SOLUTION BY GRID METHOD
Abstract and keywords
Abstract (English):
When studying the radiation effect on microcircuits, the problem arises of calculating the absorbed energy. Often it comes down to determining the radiation resistance of microcircuits. However, in some cases it is necessary to determine the distribution of temperature and voltage in the chip housings. To do this, it is necessary to get an accurate picture of how the radiation energy was absorbed in each layer, depending on the coordinate. The paper considers the solution of this problem by the grid method, which allows us to calculate the energy absorption at each point of the multilayer structure. To do this, the placement of the chip in a three-dimensional coordinate system is considered, its multilayer structure is divided into nodes, in each of which the absorbed dose is calculated. The presented mathematical model describes the processes of absorption and attenuation of the intensity of the energy flow of -quanta. The model takes into account the processes associated with the transfer of energy between the regions for the photoelectric effect and the Compton effect. The proposed method is implemented programmatically, and the paper presents the results of calculating the absorbed dose in each layer of a multilayer structure. The advantage of the developed model and the method of its solution is to obtain the dose value at each point of the multilayer structure depending on the coordinates.

Keywords:
Multilayer structure of matter, energy absorption, radiation exposure, photoelectric effect, Compton effect, grid method
References

1. Model' pogloscheniya elektromagnitnogo izlucheniya SVCh-diapazona biologicheskimi tkanyami / I.A. Laguckiy, M.V. Davydov, V.V. Kizimenko, V.A. Bogush // Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki. – 2021. – T. 19, № 1. – S. 52-60. – DOI: 10.35596/1729-7648-2021-91-1-52-60.

2. Mokrushina, S.A. Sravnenie otklika MOP-tranzistora na vozdeystvie rentgenovskogo i gamma-oblucheniya / S.A. Mokrushina, N.M. Romanov // Izvestiya vysshih uchebnyh zavedeniy Rossii. Radioelektronika. – 2020. – T. 23. № 1. – S. 30-40. – DOI: 10.32603/1993-8985-2020-23-1-30-40.

3. Lagaev, D.A. Konstruktivno-tehnologicheskie osobennosti KMOP KNI tranzistorov s povyshennoy stoykost'yu k nakoplennoy doze ioniziruyuschego izlucheniya / D.A. Lagaev, N.A. Shelepin // Elektronnaya tehnika. Seriya 3: Mikroelektronika. – 2020. – № 1 (177). – S. 5-13. – DOI: 10.7868/S2410993220010017.

4. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials / S. Yue, M. Hou, R. Wang [et al.] // Optics Express. – 2020. –Vol. 28(21). – Pp. 31844-31861. – DOI: 10.1364/OE.403551.

5. Kalashnikov, N.P. Intensivnost' izlucheniya, voznikayuschego pri vzaimodeystvii relyativistskogo elektrona s periodicheskimi neodnorodnostyami potenciala monokristalla / N.P. Kalashnikov, A.S. Ol'chak // Vestnik Nacional'nogo issledovatel'skogo yadernogo universiteta MIFI. – 2021. – T. 10, № 5. – S. 385-389. – DOI: 10.1134/S2304487X21050060.

6. Gate grounded n-MOS sensibility to ionizing dose borel / T. Michez, A. Furic, S. Danzeca [et al.] // 18th European Conference on Radiation and Its Effects on Components and Systems, RADECS 2018. – 2018. – S. 9328673. – DOI: 10.1109/RADECS45761.2018.9328673.

7. Osobennosti tehnologicheskogo processa izgotovleniya mikroshem kosmicheskogo naznacheniya po tehnologii KMOP KNS / V.K. Zol'nikov, S.A. Evdokimova, I.V. Zhuravleva [i dr.] / Modelirovanie sistem i processov. – 2020. – T. 13, № 3. – S. 53-58. – DOI: 10.12737/2219-0767-2020-13-3-53-58.

8. Performance comparison of two Monte Carlo ray-tracing methods for calculating radiative heat transfer / H. Liu, H. Zhou, D. Wang, Y. Han // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2020. – Vol. 256. –C. 107305. – DOI: 10.1016/j.jqsrt.2020.107305.

9. Olarinoye, I.O. EXABCal: A program for calculating photon exposure and energy absorption buildup factors / I.O. Olarinoye, R.I. Odiaga, S. Paul // Heliyon. – 2019. – Vol. 5(7). – C. e02017. – DOI: 10.1016/j.heliyon.2019.e02017.

10. Zol'nikov, V.K. Proektirovanie mikroshem s uchetom radiacionnogo vozdeystviya / V.K. Zol'nikov, V.P. Kryukov, A.I. Yan'kov // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2009. – № 2. – S. 28-30.

11. Glushko, A.A. Analiz metodov matematicheskogo modelirovaniya raboty v usloviyah vozdeystviya ioniziruyuschego izlucheniya KMOP - mikroshem, sformirovannyh po tehnologii "kremniy - na - izolyatore" / A.A. Glushko, A.I. Zubkova, Yu.P. Koroleva // Tehnologii inzhenernyh i informacionnyh sistem. – 2021. – № 1. – S. 10-18.

12. Osobennosti ocenki radiacionnoy stoykosti integral'nyh shem k neytronnomu vozdeystviyu / A.I. Chumakov, A.V. Sogoyan, D.V. Bobrovskiy [i dr.] // Bezopasnost' informacionnyh tehnologiy. – 2021. – T. 28, № 2. – S. 34-43. – DOI: 10.26583/bit.2021.2.03.

13. Fizicheskaya model' ocenki intensivnosti odinochnyh sobytiy pri vozdeystvii otdel'nyh yadernyh chastic / A.L. Savchenko, A.Yu. Kulay, I.I. Strukov [i dr.] // Modelirovanie sistem i processov. – 2019. – T. 12, № 4. – S. 78-83. – DOI: 10.12737/2219-0767-2020-12-4-78-83.

14. Shobolova, T.A. Radiacionno stoykiy bipolyarnyy tranzistor na strukturah "kremniy na izolyatore" / T.A. Shobolova, S.V. Obolenskiy, Yu.A. Kabal'nov // Elektronnaya tehnika. Seriya 2: Poluprovodnikovye pribory. – 2020. – № 3 (258). – S. 34-42. – DOI: 10.36815/2073-8250-2020-258-3-34-42.

15. Kabal'nov, Yu.A. Modelirovanie radiacionnyh effektov v tranzistorah na KNS-strukturah / Yu.A. Kabal'nov, A.N. Kachemcev, S.V. Obolenskiy // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2018. – № 3. – S. 31-38.

16. Design and experimental research on buffer protection of high-g penetrator for deep space exploration / H. Luo, Y. Li, C. Fan [et al.] // Acta Astronautica. – 2021. – Vol. 189. – Pp. 63-78. – DOI: 10.1016/j.actaastro.2021.08.020.

17. Coupled charge and radiation transport processes in thermophotovoltaic and thermoradiative Cells / W.A. Callahan, D. Feng, Z.M. Zhang [et al.] // Physical Review Applied. – 2021. – Vol. 15(5). – C. 054035. – DOI: 10.1103/PhysRevApplied.15.054035.

18. Kryukov, V.P. Problemy modelirovaniya bazovyh elementov KMOP BIS dvoynogo naznacheniya v SAPR / V.P. Kryukov, K.V. Zol'nikov, S.A. Evdokimova // Modelirovanie sistem i processov. – 2013. – № 4. – S. 41-44. –DOI: 10.12737/4045.

19. Metod i algoritm poiska defektov dlya radiacionno-stoykih mikroshem / K.V. Zol'nikov, V.A. Sklyar, V.P. Kryukov [i dr.] // Voprosy atomnoy nauki i teh-niki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2014. – № 2. – S. 10-13.

20. Svidetel'stvo o registracii programmy dlya EVM RU 2019663599. Programma dlya modelirovaniya stoykosti izdeliy v usloviyah dlitel'nogo vozdeystviya ioniziruyuschego izlucheniya kosmicheskogo prostranstva dlya sozdaniya radiacionno-stoykoy elektronnoy komponentnoy bazy : № 2019662572 zayavl. 11.10.2019 ; opubl. 21.10.2019 / A.S. Groshev, S.A. Evdokimova, V.K. Zol'nikov ; zayavitel' i pravoobladatel' FGBOU VO «VGLTU».

21. Svidetel'stvo o registracii programmy dlya EVM 2021664834. Programma dlya opredeleniya nachal'nogo urovnya radiacionnogo effekta pri vozdeystvii radiacii na mikroshemy : № 2021663914 zayavl. 06.09.2021 ; opubl. 14.09.2021 / I.V. Zhuravleva, K.A. Chubur, A.E. Kozyukov, V.K. Zol'nikov ; zayavitel' i pravoobladatel' FGBOU VO «VGLTU».

22. Svidetel'stvo o registracii programmy dlya EVM 2021664833. Programma rascheta vliyaniya radiacii na strukturu mikroshemy : № 2021663915 zayavl. 06.09.2021 ; opubl. 14.09.2021 / I.V. Zhuravleva, K.A. Chubur, A.E. Kozyukov, K.V. Zol'nikov ; zayavitel' i pravoobladatel' FGBOU VO «VGLTU».

Login or Create
* Forgot password?