POINT TOOLS OF GEOMETRIC MODELING, INVARIANT RELATING TO PARALLEL PROJECTION
Abstract and keywords
Abstract (English):
The purpose of this paper is to familiarize experts in geometric and computer modeling with specific tools for point calculus; demonstrate the possibilities of point calculus as a mathematical apparatus for modeling of multidimensional space’s geometric objects. In the paper with specific examples have been described the basic constructive tools for point calculus, having invariant properties relating to parallel projection. These tools are used to model geometric objects, including: affine ratio of three points of a straight line, intersection of two straight lines, intersection of a straight line with a plane, parallel translation and tangent to a curve. The theoretical foundations of point tools for geometric modeling, invariant relating to parallel projection, have been presented. For example, instead of traditional determination for straight lines intersection point by composing and solving a system of equations in coordinate form, zeroing of a moving triangle’s area is used. This approach allows to define geometric objects in multidimensional spaces keeping the symbolic representation of point equation, as well as to perform its coordinate-wise calculation at the last stage of modeling, which allows to significantly reduce computing resources in the process of solving the problems related to engineering geometry and computer graphics. The local results of the research presented in this paper, which served as examples for the use of point calculation constructive tools, are: definition of the cubic Bezier curve as a curve of one relation in point and coordinate form; determination of excessive parameterization of the plane and bypass arcs based on it; determination of the tangent to the spatial curve by differentiation the original curve with respect to a current parameter, followed by parallel transfer of the obtained segment to the tangency point; the general point equation for the torso surface has been obtained on account of its definition as a geometric place of tangents to its cusp edge, and examples for the construction of torso surfaces based on the cubic Bezier curve and a transcendental space curve have been presented.

Keywords:
geometric modeling; point calculus; parallel projection invariants; coordinate-wise calculation; curves construction; plane excessive parameterization; torso surface
References

1. Abdurahmanov Sh.A. Primenenie mehanizmov, otmechayuschih centry tyazhestey simpleksov v ih 2-mernyh proekciyah kak aksonografov mnogomernyh prostranstv [Tekst] / Sh. A. Abdurahmanov // Geometriya i grafika. – 2020. – T. 8. – № 4. – S. 13-23. – DOI: 10.12737/2308-4898-2021-8-4-13-23.

2. Balyuba I.G. Konstruktivnaya geometriya mnogoobraziy v tochechnom ischislenii [Tekst]: dis. … dokt. tehn. nauk: 05.01.01 / I.G. Balyuba. – Makeevka: MISI, 1995. – 227 s.

3. Balyuba I.G. Tochechnoe ischislenie [Tekst]: uchebnoe posobie / I.G. Balyuba, V.M. Naydysh; pod red. V.M. Vereschagi. – Melitopol': MGPU im. B. Hmel'nickogo, 2015. – 236 s.

4. Balyuba I.G. Tochechnoe ischislenie [Tekst]: uchebno-metodicheskoe posobie / I.G. Balyuba, E.V. Konopackiy, A.I. Bumaga. – Makeevka: DONNASA, 2020. – 244 s.

5. Bezdіtniy A.O. Varіativne diskretne geometrichne modelyuvannya na osnovі geometrichnih spіvvіdnoshen' u tochkovomu chislennі Balyubi-Naydisha [Tekst]: dis. … kand. tehn. nauk: 05.01.01. / A.O. Bezdіtniy. – Melіtopol', 2012. – 191 s.

6. Bezdіtniy A.O. Geometrichne modelyuvannya konstruktivnih elementіv drobarki na osnovі pobudovi poverhon' obertannya u tochkovomu chislennі [Tekst] / A.O. Bezdіtniy, V.M. Vereschaga // Naukoviy vіsnik TDATU. – Melіtopol': TDATU, 2011. – Vip.1. – S. 69-74.

7. Bumaga A.I. Geometricheskoe modelirovanie fiziko-mehanicheskih svoystv kompozicionnyh stroitel'nyh materialov v BN-ischislenii [Tekst]: dis. … kand. tehn. nauk: 05.23.05 i 05.01.01 / A.I. Bumaga. – Makeevka, 2016. – 164 s.

8. Voloshinov D.V. Algoritmicheskiy kompleks dlya resheniya zadach s kvadrikami s primeneniem mnimyh geometricheskih obrazov [Tekst] / D.V. Voloshinov // Geometriya i grafika. – 2020. – T. 8. – № 2. – S. 3-32. – DOI: 10.12737/2308-4898-2020-3-32.

9. Voronova O.S. Geometricheskoe modelirovanie parametrov fizicheskogo sostoyaniya vody i vodyanogo para [Tekst] / O.S. Voronova, E.V. Konopackiy // Vestnik kibernetiki. – Surgut: SurGU, 2019. – №1(33) 2019. – S. 29-38.

10. Golovnin A.A. Bazovye algoritmy komp'yuternoy grafiki [Tekst] / A.A. Golovnin // Problemy kachestva graficheskoy podgotovki studentov v tehnicheskom vuze: tradicii i innovacii. – 2016. – T. 1. – S. 13-30.

11. Davydenko I.P. Konstruirovanie poverhnostey prostranstvennyh form metodom podvizhnogo simpleksa [Tekst]: dis. … kand. tehn. nauk: 05.01.01. / I.P. Davydenko. – Makeevka, 2012. – 186 s.

12. E Vin Tun. Postroenie receptornyh geometricheskih modeley ob'ektov slozhnyh tehnicheskih form [Tekst] / Vin Tun E, L.V. Markin // Geometriya i grafika. – 2019. – T. 7. – № 4. – S. 44-56. – DOI: 10.12737/2308-4898-2020-44-56.

13. Konopackiy E.V. Vychislitel'nye algoritmy modelirovaniya odnomernyh obvodov cherez k napered zadannyh tochek [Tekst] / E.V. Konopackiy, A.A. Krys'ko, A.I. Bumaga // Geometriya i grafika. – 2018. – T. 6. № 3. – S. 20-32. – DOI: 10.12737/article_5bc457ece18491.72807735.

14. Konopackiy E.V. Geometricheskiy smysl metoda naimen'shih kvadratov [Tekst] / E.V. Konopackiy // Vestnik komp'yuternyh i informacionnyh tehnologiy. – 2019. – № 9. – S. 11-18. – DOI: 10.14489/vkit.2019.09.pp.011-018.

15. Konopackiy E.V. Geometricheskoe modelirovanie i optimizaciya fiziko-mehanicheskih svoystv degtepolimerbetona [Tekst] / E.V. Konopackiy [i dr.]. // Informacionnye tehnologii v proektirovanii i proizvodstve. – M.: NTC «Kompas», 2019. – № 1 (173). – S. 20-24.

16. Konopackiy E.V. Geometricheskoe modelirovanie mnogofaktornyh processov na osnove tochechnogo ischisleniya [Tekst]: dis. … d-ra tehn. nauk: 05.01.01 / E.V. Konopackiy. – Nizhniy Novgorod, 2020. – 307 s.

17. Konopackiy E.V. Ispol'zovanie krivyh odnogo otnosheniya dlya konstruirovaniya profilya kryla letatel'nogo apparata v BN-ischislenii [Tekst] / E.V. Konopackiy // Vestnik PNIPU. Aerokosmicheskaya tehnika. – Perm': PNIPU, 2017. – № 50. – S. 90-100.

18. Konopackiy E.V. Modelirovanie approksimiruyuschego 16-tochechnogo otseka poverhnosti otklika, primenitel'no k resheniyu neodnorodnogo uravneniya teploprovodnosti [Tekst] / E.V. Konopackiy // Geometriya i grafika. – 2019. – T. 7. – № 2. – S. 38-45. – DOI: 10.12737/article_5d2c1a551a22c5.12136357.

19. Konopackiy E.V. Modelirovanie poverhnosti rel'efa mestnosti na osnove sputnikovyh dannyh SRTM [Tekst] / E.V. Konopackiy, O.A. Chernysheva, Ya.A. Kokareva // Vestnik komp'yuternyh i informacionnyh tehnologiy. – 2019. – № 6. – S. 23-31. – DOI: 10.14489/vkit.2019.06.pp.023-031.

20. Konopackiy E.V. Obschiy podhod k polilineynym interpolyacii i approksimacii na osnove lineychatyh mnogoobraziy [Tekst] / E.V. Konopackiy, S.I. Rotkov, A.A. Krys'ko // Stroitel'stvo i tehnogennaya bezopasnost'. – Simferopol': FGAOU VO «KFU im. V.I. Vernadskogo», 2019. – № 15(67). – S. 159-168.

21. Konopac'kiy Є.V. Geometrichne modelyuvannya algebraїchnih krivih ta їh vikoristannya pri konstruyuvannі poverhon' u tochkovomu chislennі Balyubi-Naydisha [Tekst]: dis. … kand. tehn. nauk: 05.01.01 / Є.V. Konopac'kiy. – Melіtopol', 2012. – 164 s.

22. Korotkiy V.A. Konstruirovanie G2-gladkoy sostavnoy krivoy na osnove kubicheskih segmentov Bez'e [Tekst] / V.A. Korotkiy // Geometriya i grafika. – 2021. – T. 9. – № 2. – S. 12-28. – DOI: 10.12737/2308-4898-2021-9-2-12-28.

23. Korotkiy V.A. Kubicheskie krivye v inzhenernoy geometrii [Tekst] / V.A. Korotkiy // Geometriya i grafika. – 2020. – T. 8. – № 3. – S. 3-24. – DOI: 10.12737/2308-4898-2020-3-24.

24. Krivoshapko S.N. Torsovye poverhnosti i obolochki: Spravochnik / S.N. Krivoshapko // M.: Izd-vo UDN, 1991. – 287 s.

25. Krys'ko A.A. Geometricheskoe i komp'yuternoe modelirovanie ekspluatiruemyh konstrukciy tonkostennyh obolochek inzhenernyh sooruzheniy s uchetom nesovershenstv geometricheskoy formy [Tekst]: dis. … kand. tehn. nauk: 05.23.01 i 05.01.01 / A.A. Krys'ko. – Makeevka, 2016. – 191 s.

26. Kucherenko V.V. Formalіzovanі geometrichnі modelі neregulyarnoї poverhnі dlya gіperkіl'kіsnoї diskretnoї skіnchenoї mnozhini tochok [Tekst]: dis. … kand. tehn. nauk: 05.01.01 / V.V. Kucherenko. – Melіtopol', 2013. – 234 s.

27. Naydysh A.V. Teoreticheskie osnovy geometricheskogo modelirovaniya fiziko-mehanicheskih svoystv asfal'tobetonov metodami BN-ischisleniya [Tekst] / A.V. Naydysh, E.V. Konopackiy, A.I. Bumaga // Matematika. Geometrіya. Іnformatika. – Melіtopol': MDPU іm. B. Hmel'nic'kogo, 2014. – T.1. – S. 111-117.

28. Panchuk K.L. Geometricheskaya model' generacii semeystva konturno-parallel'nyh liniy dlya avtomatizirovannogo rascheta traektorii rezhuschego instrumenta [Tekst] / K.L. Panchuk, T.M. Myasoedova, I.V. Krysova // Geometriya i grafika. – 2019. – T. 7. – № 1. – S. 3-13. – DOI: 10.12737/article_5c92012c51bba1.17153893.

29. Plaksin A.M. Geometricheskoe modelirovanie teplovyh harakteristik ob'ektov funkcional'no-voksel'nym metodom / A.M. Plaksin, S.A. Pushkarev // Geometriya i grafika. – 2020. – T. 8. – № 1. – S. 25-32. – DOI: 10.12737/2308-4898-2020-25-32.

30. Pushkarev S.A. Geometricheskoe modelirovanie sredstv vizualizacii napryazheniya na osnove funkcional'no-voksel'nogo metoda [Tekst] / S.A. Pushkarev, A.M. Plaksin, A.A. Sycheva, P.M. Harlanova // Geometriya i grafika. – 2020. – T. 8. – № 3. – S. 36-43. – DOI: 10.12737/2308-4898-2020-36-43.

31. Ryazanov S.A. Analiticheskie zavisimosti kinematicheskogo formoobrazovaniya nachal'nyh poverhnostey elementov chervyachnoy peredachi [Tekst] / S.A. Ryazanov, M.K. Reshetnikov // Geometriya i grafika. – 2019. – T. 7. – № 2. – S. 65-75. – DOI: 10.12737/article_5d2c2dda42fda7.79858292.

32. Savel'ev Yu.A. Vychislitel'naya grafika v reshenii netradicionnyh inzhenernyh zadach [Tekst] / Yu.A. Savel'ev, E.Yu. Cherkasova // Geometriya i grafika. – 2020. – T. 8. – № 1. – S. 33-44. – DOI: 10.12737/2308-4898-2020-33-44.

33. Chernysheva O.A. Vychislitel'nye algoritmy i komp'yuternye sredstva modelirovaniya neregulyarnoy topograficheskoy poverhnosti [Tekst]: dis. … kand. tehn. nauk: 05.13.18 / O.A. Chernysheva. – Doneck, 2019. – 150 s.

34. Cantón A. Curvature of planar aesthetic curves [Text] / A. Cantón, L. Fernández-Jambrina, M.J. Vázquez-Gallo // Journal of Computational and Applied Mathematics, 2021. – Vol. 381. – DOI: 10.1016/j.cam.2020.113042.

35. Kucukoglu I. Multidimensional Bernstein polynomials and Bezier curves: Analysis of machine learning algorithm for facial expression recognition based on curvature [Text] / I. Kucukoglu, B. Simsek, Y. Simsek // Applied Mathematics and Computation, 2019. – Vol. 344-345. – pp. 150-162. – DOI: 10.1016/j.amc.2018.10.012.

36. Li X. Aperture illumination designs for microwave wireless power transmission with constraints on edge tapers using Bezier curves [Text] / X. Li, K.M. Luk, B. Duan // IEEE Transactions on Antennas and Propagation, 2019. – Vol. 67. – No. 2. – pp. 1380-1385. – DOI: 10.1109/TAP.2018.2884850.

Login or Create
* Forgot password?