Irkutsk, Russian Federation
employee from 01.01.1999 until now
Irkutsk, Irkutsk region, Russian Federation
Irkutsk, Russian Federation
UDK 52 Астрономия. Геодезия
We analyze the Sun-to-Earth transport of energetic protons accelerated in solar flares. We use a model which assumes that protons move earthward in the Parker electromagnetic field. In this model, protons are shown to be recorded on Earth when they, moving away from the solar flare region, reach the vicinity of the heliospheric current sheet, while Earth is at a distance smaller than the proton Larmor radius from the current sheet neutral line. We present the analysis of experimental data on solar flares in August–September 2011. This analysis shows that the absence of energetic protons recording in the vicinity of Earth for some major solar flares can be explained by the proposed model.
solar flares, solar proton events, ground level enhancements
1. Bazilevskaya G.A., Krainev M.B., Machmutov V.S. The effects of the drift in the regular interplanetary magnetic field on the parameters of the solar cosmic rays. Proc. 17th International Cosmic Rays Conference, Paris, France. 1981, vol. 3, pp. 393–396.
2. Berezhko E.G., Krymskii G.F. Acceleration of cosmic rays by shock waves. Soviet Physics Uspekhi. 1988, vol. 31, no. 1, pp. 27–51.
3. Berezhko E.G., Petukhov S.I., Taneev S.N. Particle acceleration by interplanetary shocks. Proc. 25th International Cosmic Rays Conference, Durban, South Africa. 1997, vol. 1, pp. 257–260.
4. Desai M., Giacalone J. Large gradual solar energetic particle events. Living Rev. Solar Phys. 2016, vol. 13, no. 3. DOI: 10.1007/s41116-016-0002-5.
5. Echer E., Gonzalez W.D., Tsurutani B.T., Gonzalez A.L.C. Interplanetary conditions causing intense geomagnetic storms (Dst≤−100 nT) during solar cycle 23 (1996–2006). J. Geophys. Res. 2008, vol. 113, A05221. DOI: 10.1029/2007JA012744.
6. Ellison D.C., Ramaty R. Shock acceleration of electrons and ions in solar flares. Astrophys. J. 1985, vol. 298, pp. 400–408.
7. Kichigin G.N., Kravtsova M.V., Sdobnov V.E. Global solar magnetic field and cosmic ray ground level enhancement. Solar Phys. 2019, vol. 294, p. 116. DOI: 10.1007/s11207-019-1516-5.
8. Lazutin L.L. Increases in SCR energetic proton fluxes on earth and their relation to solar sources. Solar-Terr. Phys. 2020, vol. 6, no. 4, pp. 40–43. DOI: 10.12737/szf-64202006.
9. Logachev Yu.I., Bazilevskaya G.A., Daibog E.I., Ginzburg E.A., Ishkov V.N., Lazutin L.L., Nguyen M.D., Surova G.M., Vlasova N.A., Yakovchouk O.S. List of Solar Proton Events in the 24 Cycle of Solar Activity (2009‒2019). Geophysical Center RAS, Moscow, Russia, 2019. DOI: 10.2205/ESDB-SAD-P-007.
10. Ng C.K., Reames D.V., Tylka A.J. Modeling shock-accelerated solar energetic particles coupled to interplanetary Alfve ́n waves. Astrophys. J. 2003, vol. 591, pp. 461–485. DOI: 10.1086/375293.
11. Parker E.N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 1958, vol. 128, p. 664. DOI: 10.1086/146579.
12. Reames D.V. What are the sources of solar energetic particles? Rev. Geophys. 1995, vol. 33, p. 585. DOI: 10.1007/s11214-015-0210-7.
13. Reames D.V. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 1999, vol. 90, pp. 413–491. DOI: 10.1023/A:1005105831781.
14. Reames D.V. The two sources of solar energetic particles. Space Sci. Rev. 2013, vol. 175, iss. 1-4, pp. 53–92. DOI: 10.1007/s11214-013-9958-9.
15. Richardson I.G. Identification of interplanetary coronal mass ejections at Ulysses using Multiple Solar Wind Signatures. Solar Phys. 2014, vol. 289, pp. 3843–3894. DOI: 10.1007/s11207-014-0540-8.
16. Richardson I.G., Webb D.F., Zhang J., Berdichevsky D.B., Biesecker D.A., Kasper J.C., Kataoka R., Steinberg J.T., Thompson B.J., Wu C.-C., Zhukov A.N. Correction to “Major geomagnetic storms (Dst≤−100 nT) generated by corotating interaction regions”. J. Geophys. Res. 2007, vol. 112, iss. A12. DOI: 10.1029/2007JA012332.
17. Schatten K.H., Wilcox J.M., Ness N.F. A model of interplanetary and coronal magnetic fields. Solar Phys. 1969, vol. 6, iss. 3, pp. 442–455.
18. URL: http://wso.stanford.edu/synsourcel.html (accessed Desember 1, 2021).
19. URL: https://cdaw.gsfc.nasa.gov/CME_list/sepe (accessed Desember 1, 2021)