graduate student
Purpose: Currently, the most prevalent foreign geotechnical software systems (Midas GTS NX, Plaxis) include modules for thermophysical modeling. Thermophysical modeling is especially important in the design and construction on foundations composed of frozen soils. When carrying out numerical calculations, an important stage is the verification of models, here thermophysical models, of frozen soils for their compliance with theoretical bases and calculation prerequisites, underlying in domestic standards. For this purpose, a comparison was made of theoretical prerequisites in foreign geotechnical complexes with prerequisites underlying in Termoground package which was created with the participation of specialists from the Federal State Budgetary Educational Institution of Higher Education Petersburg State Transport University, PGUPS [Kudryavtsev S.A., Sakharov I.I., Paramonov V.N.]. This package has a long background of successful use in the practice of calculations and projection; the theoretical premises, implemented therein. are verified and fully comply with the requirements of domestic standards. Methods: Conducting theoretical analysis of regulatory and technical documents of foreign software systems. Performing numerical simulation of real thermophysical problems. Results: It has been established that dependences underlying foreign geotechnical complexes, in general, have the same theoretical prerequisites as those reflected in domestic regulatory documents; also, at numerical modeling, a satisfactory convergence of the calculated temperature fields in a soil mass for building construction real tasks on frozen ground was noted. Practical importance: The obtained results can be used in the practice of design/construction for to set thermophysical parameters for foundation soils in the course of numerical modeling of thermophysical tasks and analysis of geocryological situation of the Far North conditions.
numerical modeling, thermophysical modeling, frozen soil, permafrost soils, soil heat capacity, soil thermal conductivity, midas
1. Nevzorov A.L. Fundamenty na sezonnopromerzayuschih gruntah. Uchebnoe posobie/ M. Izd. ASV, 2000, – 152 s.
2. Cytovich N.A. Mehanika merzlyh gruntov. M.: Vyssh. shkola, 1973. 448 s.
3. Kronik Ya.A. Termomehanicheskie modeli merzlyh gruntov i kriogennyh processov. – V kn.: Reologiya gruntov i inzhenernoe merzlotovedenie. M.: Nauka, 1982. – S. 200-211.
4. Kronik Ya.A., Demin I.I. Raschety temperaturnyh poley i napryazhenno-deformirovannogo sostoyaniya gruntovyh sooruzheniy metodom konechnyh elementov. MISI. M.: 1982. – 102 s.
5. Kudryavcev S.A., Saharov I.I., Paramonov V.N. Promerzanie i ottaivanie gruntov (prakticheskie primery i konechnoelementnye raschety): Gruppa kompaniy «Georekonstrukciya» – SPb. 2014
6. Paramonov M.V. Napryazhenno-deformirovannoe sostoyanie sistemy «osnovanie – sooruzhenie» pri neodnomernom promerzanii. Avtoref. diss. kand. tehn. nauk. SPb, 2013 – 12 c.
7. SP 25.13330.2020 «SNiP 2.02.04-88 Osnovaniya i fundamenty na vechnomerzlyh gruntah» – utv. Ministrom stroitel'stva i zhilischno-kommunal'nogo hozyaystva RF №915/pr ot 30.12.2020 g. – M.: FAU «FCS», 2020 – 135 s.
8. RSN 67-87. Inzhenernye izyskaniya dlya stroitel'stva. Sostavlenie prognoza izmeneniy temperaturnogo rezhima vechnomerzlyh gruntov chislennymi metodami – utv. Postanovlenie Gosudarstvennogo komiteta RSFSR po delam stroitel'stva №152 ot 20.08.1987 g. – M.: Gosstroy RSFSR, 1987 – 80 s.
9. Il'ichev V.A., Mangushev R.A. Spravochnik geotehnika. Osnovaniya, fundamenty i podzemnye sooruzheniya – M.: Izdatel'stvo Associacii stroitel'nyh vuzov, 2014 – 728 s.
10. MIDAS – URL: https://www.youtube.com/watch?v=qdm1ZqeC67s (data obrascheniya: 13.05.2022).
11. Vavrinyuk T.S. Primery temperaturnyh raschetov v PK PLAXIS // XIII konferenciya pol'zovateley PLAXIS, oktyabr' 2020 / OOO «NIP-Informatika». Sistem. Trebovaniya: PowerPoint. URL: https://www.plaxis.ru/content/uploads/2020/11/RPUM-2020-Vavrinyuk-T-S.pdf (data obrascheniya 13.05.2022).