Fryazino, Moscow, Russian Federation
UDK 681 Точная механика
The article deals with scientific and technical problems associated with the functionality of the geostationary lightning mapper, which is currently used for meteorological monitoring. Results of the study into the Schumann resonance phenomenon and the technical parameters of the mapper were analyzed simultaneously. A hypothesis is offered which suggests that there are pulsations in the time dependences of the radiation power of lightning activity at frequencies corresponding to Schumann resonance. A new application of the geostationary lightning mapper for studying plasma phenomena is proposed. Adding to the mapper an acousto-optic filter and a camera, which has the functions of switching the resolution/frame rate parameters, is shown to be useful for both meteorological and plasma studies.
geostationary lightning mapper, Schumann resonance, acousto-optical filter, high-speed shooting
1. Bruning E.C., Tillier C.E., Edgington S.F., et al. Meteorological Imagery for the Geostationary Lightning Mapper. J. Geophys. Res.: Atmos. 2019, vol. 124, iss. 24, pp. 14285–14309. DOI: 10.1029/2019JD030874.
2. Chang I.C. Noncollinear acusto-optic filer with large angular aperture. Applied Technology. Appl. Phys. Lett. 1974, vol. 25, p. 370. DOI: 10.1063/1.1655512.
3. Chowdhuri P., Anderson J.G., Chisholm W.A., et al. Parameters of lightning strokes: A review. IEEE Trans. Power Del. 2005, vol. 20, no. 1, pp. 346–358.
4. Epikhin V.M., Kiyachenko Yu.F., Mazur M.M., Mazur L.I., Paltsev L.L., Suddenok Yu.A., Shorin V.N. Acousto-optical imaging spectrometers for visible and near infra-red ranges. Fizicheskie osnovy priborostroeniya [Physical Bases of Instrumentation]. 2013, vol. 2, no. 4, pp. 116–125. (In Russian).
5. Fernando S, Pfaff R., Freudenreich H. Satellite observations of Schumann resonances in the Earth’s ionosphere. Geophys. Res. Lett. 2011, vol. 38, L22101. DOI: 10.1029/2011GL049668.
6. Filatov A.L. Experimental study of multiband acousto-optic filtering by decoding of spectrally encoded signals in noncoherent OCDMA systems. Pisma v zhurnal tekhnicheskoi fiziki [Technical Physics Lett.]. 2021, vol. 47(1), pp. 16–18. DOI: 10.1134/S1063785021010077. (In Russian).
7. Filatov A.L., Yaremenko N. G., Karachevtseva M.V. Comparison between characteristics of interference and acousto-optic filters in monochromatic geostationary lightning mapper. 18-ya Vserossiiskaya otkrytaya konferentsiya «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa»: Trudy [Proc. 18th National Open Conference “Current Problems in Remote Sensing of the Earth From Space”]. 2020, Moscow, IKI RAS, P. 128. (In Russian).
8. Füllekrug M., Constable S. Global triangulation of intense lightning discharges. Geophys. Res. Lett. 2000, vol. 27, p. 333.
9. Gektin Yu.M. Perspective optic systems for remote sensing of the Earth from space on the base of small spacecraft Tsifrovaya transformatsiya kosmicheskogo priborostroeniya [Digital Transformation of Space Device Engineering]. 2019, pp. 227–239. Korolyov, TsNIImash, 2019, 397 p. (In Russian).
10. Glenar D.A., Hillman J.J., Saiff B., Bergstralh J. Acousto-optic imaging spectropolarimery for remote sensing. Appl. Optics. 1994, vol. 33, pp. 7412–7424.
11. Goodman S.J., Blakeslee R.J., Koshak W.J., et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013, vol. 125–126, pp. 34–49. DOI: 10.1016/j.atmosres.2013.01.006.
12. Holzworth R.H., Brundell J.B., McCarthy M.P., et al. Lightning in the Arctic. Geophys. Res. Lett. 2021, vol. 48, iss.7, e2020GL091366. DOI: 10.1029/2020GL091366.
13. Korablev O.I., Trokhimovskiy A.Yu., Kalinnikov Yu.K. AOTF spectrometers in space missions and their imaging capabilities. Proc. International Conference on Space Optics — ICSO 2016. 2016, vol. 10562, 105621M. DOI: 10.1117/12.2296244.
14. Kozun M.N., Bourassa A.E., Degenstein D.A., Loewen P.R. A multi-spectral polarimetric imager for atmospheric profiling of aerosol and thin cloud: Prototype design and sub-orbital performance. Rev. Sci. Instruments. 2020, vol. 91, 103106. DOI: 10.1063/5.0016129.
15. Kvitka V.E., Korkh A.V. Creation of lightning detector for the International Space Station. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta [Vestnik of Ryazan State Radio Engineering University]. 2018, no. 66-1, pp. 42–49. DOI: 10.21667/1995-4565-2018-66-4-1-42-49. (In Russian).
16. Kvitka V.E., Diuldin R.S., Klyushnikov M.V, Prasolov V.O. Geostatsionarnyi detektor molnii. 17-ya Vserossiiskaya otkrytaya konferentsiya «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa»: Trudy [Proc. 17th National Open Conference “Current Problems in Remote Sensing of the Earth From Space”]. 2019, Moscow, IKI RAS, p. 140. (In Russian).
17. Kvitka V.E. Programmno-apparatnyi kompleks detektora molnii kosmicheskogo bazirovaniya [Hardware-Software Complex of the Geostationary Lightning Mapper]. The Dissertation for the Scientific Degree of the Candidate of Technical Sciences], Dolgoprudnyi, 2020, 130 p. (In Russian).
18. Mantsevich S.N., Kupreychik M.I., V.I. Balakshy. Analysis of wide-angle acousto-optic filters based on paratellurite crystal. XXII Mezhdunarodnaya nauchnaya konferentsiya “Volnovaya elektronika i infokommunikatsionnye sistemy: Trudy [XXII International Scientific Conference “Wave Electronics and Infocommunication Systems”]. Vol. 2. Pt. 1. Saint-Petersburg, 2020, p. 53. (In Russian).
19. Molchanov V.Y., Anikin S.P., Chizhikov S.I., et al. Acousto-optical imaging spectropolarimetric devices: new opportunities and developments Conference “Ground-based and Airborne Instrumentation for Astronomy”. V At: Montréal, Quebec, Canada. 2014, vol. SPIE 9147. DOI: 10.1117/12.2055150.
20. Perchik A.V. Spectral imaging AOTF spectrometer for world ocean observation. Proc. SPIE 8888 “Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions”. 2013, 88880P. DOI: 10.1117/12.2029173.
21. Prácser E., Bozóki T. On the reliability of the inversion aimed to reconstruct global lightning activity based on Schumann resonance measurements. J. Atmos. Solar-Terr. Phys. 2022, vol. 235, 105892. DOI: 10.1016/j.jastp.2022.105892.
22. Pustovoit V.I., Pozhar V.E. Acousto-optical spectrometers for Earth Remote sensing. Earth Observing Systems IV. Proc. SPIE. 1999, vol. SPIE 3750, pp. 243–249.
23. Romanov A.A., Tyulin A.E. Sixth technological way in space device engineering. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy [Rocket-Space Device Engineering and Information Systems], 2017, no. 4, pp. 64–82. DOI: 10.17238/issn2409-0239.2017.4.64. (In Russian).
24. Schlegel K., Füllekrug M. 50 Years of Schumann Resonance. Physik in unserer Zeit. 2002, vol. 33, no. 6, pp. 256–261.
25. Schumann W.O. Uber die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschichtund einer Ionospharenhulle umgeben ist. Z. Naturforsch. 1952, vol. 7a, p. 149.
26. Sentman D.D., Schumann Resonances.Handbook of Atmospheric Electrodynamics. Vol. 1. CRC Press, Boca Raton, USA, 1995, p. 267.
27. Voloshinov V.B., Mosquera, J.C. Wide-aperture acousto-optic interaction in birefringent crystals. Optika i spektroskopiya [Optics and Spectroscopy]. 2006, vol. 101, no. 4, pp. 635–641. DOI: 10.1134/S0030400X06100225.
28. Yushkova K.B., Anikina S.P., Chizhikova S.I., et al. Recent advances in acousto-optic instrumentation for astronomy. Acta Physica Polonica A. 2015, no. 1, pp. 81–83. DOI: 10.12693/ APhysPolA.127.81.
29. Zherebtsov G.A. Complex of heliogeophysical instruments of new generation. Solar-Terrestrial Physics. 2020, vol. 6, iss. 2, pp. 3–13. DOI: 10.12737/stp-62202001.
30. URL: https://www.nasa.gov/feature/goddard/2017/flashy-first-images-arrive-from-noaa-s-goes-16-lightning-mapper (accessed April 27, 2022).
31. URL: https://www.youtube.com/watch?v=DIYtIg0Q89k (accessed April 27, 2022).
32. URL: https://evercam.ru/produktsiya/8/942 (accessed April 27, 2022).