Individual rehabilitation programs for patients with central paralysis should be based on the knowledge of the corticospinal tracts (CST) anatomy and function as well as understanding of neuroplasticity mechanisms in case of CST damage. We aimed to provide an overview of the current CTF studies, the classification and the functions of CTFs. The possible mechanisms for motor recovery after brain injury are discussed in relation to the rehabilitation approaches.
corticospinal tract, neuroplasticity, rehabilitation, motoneuron, transcranial magnetic stimulation, diffusion tensor tractography
1. Jang S.H. The corticospinal tract from the viewpoint of brain Rehabilitation.// J Rehabil Med. - 2014 - №46(3) - p.193-199. doi: 10.2340/16501977-1782.
2. Jang S.H., Chang C.H., Jung Y.J., Seo Y.S. Recovery of an injured corticospinal tract via an unusual pathway in a stroke patient// Medicine (Baltimore). - 2019 - №98(7) - e14307. doi: 10.1097/MD.0000000000014307.
3. Cho H.M., Choi B.Y., Chang C.H., Kim S.H., Lee J., Chang M.C., Son S.M., Jang S.H. The clinical characteristics of motor function in chronic hemiparetic stroke patients with complete corticospinal tract injury.// Neurorehabilitation. - 2012 - №31(2) - p. 207-213. doi: 10.3233/NRE-2012-0790.
4. Ivanova G.E., Belkin A.A., Belyaev A.F., Bodrova R.A., Buylova T.V., Mel'nikova E.V., Mishina I.E., Prokopenko S.V., Sarana A.M., Stahovskaya L.V., Suvorov A.Yu., Shamalov N.A., Shmonin A.A.,Hasanova D.R., Cykunov M.B. O podgotovke kadrov v oblasti medicinskoy reabilitacii. Vrach po fizicheskoy i reabilitacionnoy medicine.// Vestnik vosstanovitel'noy mediciny. - 2017 - №2(78) - str. 4-5.
5. Borodulina I.V., Badalov N.G., Muhina A.A., Guscha A.O. Ocenka effektivnosti kompleksnogo lecheniya s primeneniem ritmicheskoy transkranial'noy magnitnoy stimulyacii i obschih gidrogal'vanicheskih vann u pacientov s poyasnichno-krestcovoy radikulopatiey.// Vestnik vosstanovitel'noy mediciny. - 2019 - №1(89) - str.33-41.
6. Nijland R.H., van Wegen E.E., Harmeling-van der Wel B.C., Kwakkel G., EPOS Investigators. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the epos cohort study.// Stroke. - 2010 - №41(4) - p. 745-50. doi: 10.1161/STROKEAHA.109.572065.
7. Kim Y.H., Jang S.H., Byun W.M., Han B.S., Lee K.H., Ahn S.H. Ipsilateral motor pathway confirmed by combined brain mapping of a patient with hemiparetic stroke: a case report.// Arch Phys Med Rehabil. - 2004 - №85(8) - p. 1351-1353. doi: 10.1016/j.apmr.2003.08.102.
8. Bawa P., Hamm J.D., Dhillon P., Gross P.A. Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects.// Exp Brain Res. - 2004 - №158(3) - p. 385-90. doi: 10.1007/s00221-004-2031-x.
9. Mori S., Tournier, J.D. Introduction to Diffusion Tensor Imaging and Higher Order Models.// Oxford, UK.: Academic Press; - 2013 - p. 126.
10. Nucifora P.G., Verma R., Lee S.K., Melhem E.R. Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity.// Radiology. - 2007 - №245(2) - p. 367-384.
11. Hong J.H., Jang S.H. Aberrant pyramidal tract in a patient with corona radiata infarct a diffusion tensor tractography study.// Neural Regen Res. - 2011 - №6 - p. 1027-1030
12. Kwon H.G., Lee D.G., Son S.M., Byun W.M., Hong C.P., Lee D.H., Kim S., Jang S.H. Identification of the anterior corticospinal tract in the human brain using diffusion tensor imaging.// Neurosci Lett. - 2011 - №505(3) - p. 238-241. doi: 10.1016/j.neulet.2011.10.020.
13. Lindenberg R., Zhu L.L., Ruber T, Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. // Hum. Brain Mapp. - 2012 - №33(5) - p. 1040-1051. doi: 10.1002/hbm.21266.
14. Song F., Zhang F., Yin D.Z., Hu Y.S., Fan M.X., Ni H.H., Nan X.L., Cui X., Zhou C.X., Huang C.S., Zhao Q., Ma L.H., Xu Y.M., Xia Q.J. Diffusion tensor imaging for predicting hand motor outcome in chronic stroke patients.// J. Int. Med. Res. - 2012 - №40 - p. 126-133. doi: 10.1177/147323001204000113.
15. Yin D., Yan X., Fan M., Hu Y., Men W., Sun L., Song F. Secondary degeneration detected by combining voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes in hand function.// AJNR Am. J. Neuroradiol. - 2013 - №34(7) - p. 1341-1347. doi: 10.3174/ajnr.A3410.
16. Yamada K., Sakai K., Akazawa K., Yuen S., Nishimura T. MR tractography: a review of its clinical applications.// Magn Reson Med Sci. - 2009 - №8 - p. 165-74. doi: 10.2463/mrms.8.165.
17. Heeger D.J., Ress. D. What does fMRI tell us about neuronal activity? // Nature Rev. Neurosci. - 2002 - №3(2) - p. 142-151. doi: 10.1038/nrn730.
18. Terakawa H., Abe K., Nakamura M., Okazaki T., Obashi J., Yanagihara T.Ipsilateral hemiparesis after putaminal hemorrhage due to uncrossed pyramidal tract. // Neurology. - 2000 - №54(9) - p. 1801-1805. doi: 10.1212/wnl.54.9.1801.
19. Hong J.H., Son S.M., Byun W.M., Jang H.W., Ahn S.H., Jang S.H. Aberrant pyramidal tract in medial lemniscus of brainstem in the human brain. // Neuroreport. - 2009 - №20(7) - p. 695-697. doi: 10.1097/wnr.0b013e32832a5c86.
20. Carpenter M.B., Sutin J. Human Neuroanatomy. // 8th ed. Baltimore, MD: Williams & Wilkins; - 1983 - №6(6) - p. 285. doi:10.1002/mus.880060612.
21. Lohia A., McKenzie J. Neuroanatomy, Pyramidal Tract Lesions. // StatPearls Publishing; Treasure Island (FL): - 2019.
22. Gould D.// BRS Neuroanatomy, 6th ed. Wolters Kluwer; - 2020 - p.372.
23. Seo J.P., Jang S.H. Different characteristics of the corticospinal tract according to the cerebral origin: DTI study. // AJNR Am J Neuroradio. - 2013 - №34(7) - p. 1359-1363. doi: 10.3174/ajnr.A3389.
24. Martin J.H. The corticospinal system: from development to motor control. // Neuroscientist. - 2005 - №11(2) - p. 161-173.
25. Jankowska E., Edgley S. How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions. // Neuroscientist. - 2006 - №12(1) - p.67-79. doi: 10.1177/1073858405283392.
26. Gasser T., Rousson V., Caflisch J., Jenni O.G. Development of motor speed and associated movements from 5 to 18 years. // Dev Med Child Neurol. - 2010 - №52 - p. 256-263. doi: 10.1111/j.1469-8749.2009.03391.x.
27. Eyre J.A. Corticospinal tract development and its plasticity after perinatal injury. // Neurosci Biobehav Rev. - 2007 - №31(8) - p. 1136-1149. doi: 10.1016/j.neubiorev.2007.05.011.
28. Müller K., Kass-Iliyya F., Reitz M. Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation. // Ann Neurol. - 1997 - №42(5) - p.705-711. doi: 10.1002/ana.410420506.
29. Koerte I., Heinen F., Fuchs T., Laubender R.P., Pomschar A., Stahl R., Berweck S., Winkler P., Hufschmidt A., Reiser M.F., Ertl-Wagner B. Anisotropy of callosal motor fibers in combination with transcranial magnetic stimulation in the course of motor development. // Invest Radiol. - 2009 - №44 - p. 279-284. doi: 10.1097/RLI.0b013e31819e9362.
30. Yamashita M., Yamamoto T. Aberrant pyramidal tract in the medial lemniscus of the human brainstem: normal distribution and pathological changes. // Eur Neurol. - 2001 - №45(2) - p. 75-82. doi: 10.1159/000052099.
31. Kwon H.G., Son S.M., Chang M.C., Kim S., Kwon Y.H., Jang S.H. Characteristics of the aberrant pyramidal tract in comparison with the pyramidal tract in the human brain. // BMC Neurosci. - 2011 - №12 - p. 108. doi: 10.1186/1471-2202-12-108.
32. Jang S.H. Aberrant pyramidal tract in the medial lemniscus of the brainstem in a patient with a pontine infarct: diffusion tensor tractography study. // J Neurol Neurosurg Psychiatry. - 2009 - №80(2) - p. 243-244. doi: 10.1136/jnnp.2008.146571.
33. Cauraugh J.H., Summers J.J. Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. // Prog Neurobiol. - 2005 - №75(5) - p. 309-20. doi: 10.1016/j.pneurobio.2005.04.001.
34. Carrasco-Moro R., Castro-Dufourny I., Martínez-San Millán J.S., Cabañes-Martínez L., Pascual J.M. Ipsilateral hemiparesis: the forgotten history of this paradoxical neurological sign. // Neurosurg Focus. - 2019 - №47(3) - E7. doi: 10.3171/2019.6.FOCUS19337.
35. Schaechter J.D., Fricker Z.P., Perdue K.L., Helmer K.G., Vangel M.G., Greve D.N., Makris N. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. // Hum Brain Mapp. - 2009 - №30(11) - p. 3461-3474. doi: 10.1002/hbm.20770.
36. Puig J., Blasco G., Daunis-I.-Estadella J., Thomalla G, Castellanos M, Figueras J, Remollo S, van Eendenburg C, Sánchez-González J, Serena J, Pedraza S. Decreased corticospinal tract fractional anisotropy predicts long-term motor outcome after stroke. // Stroke. - 2013 - №44(7) - p. 2016-2018. doi: 10.1161/STROKEAHA.111.000382.
37. Kim E.H., Lee J., Jang S.H. Motor outcome prediction using diffusion tensor tractography of the corticospinal tract in large middle cerebral artery territory infarct. // NeuroRehabilitation. - 2013 - №32(3) - p. 583-590. doi: 10.3233/NRE-130880.
38. Lin D.J., Cloutier A.M., Erler K.S., Cassidy J.M., Snider S.B., Ranford J., Parlman K., Giatsidis F., Burke J.F., Schwamm L.H., Finklestein S.P., Hochberg L.R., Cramer S.C. Corticospinal Tract Injury Estimated From Acute Stroke Imaging Predicts Upper Extremity Motor Recovery After Stroke. // Stroke. - 2019 - №50(12) - p. 3569-3577. doi: 10.1161/STROKEAHA.119.025898.
39. Jayaram G., Stagg C.J., Esser P., Kischka U., Stinear J., Johansen-Berg H. Relationships between functional and structural corticospinal tract integrity and walking post stroke. // Clin. Neurophysiol. - 2012 - №123(12) - p. 2422-2428. doi: 10.1016/j.clinph.2012.04.026.
40. Serradj N., Agger S.F., Hollis E.R. Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury. // Neurosci Lett. - 2017 - №652 - p. 94-104. doi: 10.1016/j.neulet.2016.12.003.
41. Brown A.R., Martinez M. From cortex to cord: motor circuit plasticity after spinal cord injury. // Neural Regen Res. - 2019 - №14(12) - p. 2054-2062. doi: 10.4103/1673-5374.262572.
42. Kwon H.G., Jang S.H. Significance of rehabilitative management during the critical period for motor recovery in intracerebral hemorrhage: a case report. // J Rehabil Med. - 2012 - №44(3) - p. 280-284. doi: 10.2340/16501977-0931.
43. Rong D., Zhang M., Ma Q., Lu J., Li K. Corticospinal tract change during motor recovery in patients with medulla infarct: a diffusion tensor imaging study. // Biomed Res Int. - 2014; doi: 10.1155/2014/524096.
44. Yeo S.S., Jang S.H. A change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex in a patient with intracerebral hemorrhage. // Neural Regen Res. - 2012 - №7(12) - p. 939-942. doi: 10.3969/j.issn.1673-5374.2012.12.010.
45. Jang S.H., Kwon H.G. Deterioration of pre-existing hemiparesis due to injury of the ipsilateral anterior corticospinal tract. // BMC Neurol. - 2013 - №13 - p. 53. doi: 10.1186/1471-2377-13-53.
46. Markdorf S.A., Vasil'kiv L.M., Petrovskiy E.D., Predtechenskaya E.V., Savelov A.A., Stankevich Yu.A., Tulupov A.A., Shtark M.B. Funkcional'naya MRT v ocenke effektivnosti hirurgicheskoy reperfuzii pri ishemicheskom insul'te. // Vestnik vosstanovitel'noy mediciny. - 2017 - №2(78) - p. 27-35.
47. Etoh S., Noma T., Matsumoto S., Kamishita T., Shimodozono M., Ogata A., Kawahira K. Stroke Patient with Mirror Movement of the Affected Hand Due to an Ipsilateral Motor Pathway Confirmed by Transcranial Magnetic Stimulation: A Case Report. // Int J Neurosci. - 2010 - №120(3) - p. 231-235. doi: 10.3109/00207450903404229.
48. Bestmann S., Swayne O., Blankenburg F., Ruff C.C., Teo J., Weiskopf N., Jon Driver, Rothwell J.C., Ward N.S. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. // J. Neurosci. - 2010 - №30(36) - p. 11926-11937. doi: 10.1523/JNEUROSCI.5642-09.2010.
49. Caramia M.D., Palmieri M.G., Giacomini P., Iani C., Dally L., Silvestrini M. Ipsilateral activation of the unaffected motor cortex in patients with hemiparetic stroke. // Clin Neurophysiol. - 2000 - №111(11) - p. 1990-1996. doi: 10.1016/s1388-2457(00)00430-2.
50. Staudt M., Grodd W., Gerloff C., Erb M., Stitz J., Krageloh-Mann I. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. // Brain. - 2002 - №125 - p. 2222-2237. doi: 10.1093/brain/awf227.
51. Papale A.E., Hooks B.M. Circuit changes in motor cortex during motor skill learning. // Neuroscience. - 2018 - №368 - p. 283-297. doi: 10.1016/j.neuroscience.2017.09.010.
52. Kim Y.H., You S.H., Ko M.H., Park J.W., Lee K.H., Jang S.H., Yoo W.K., Hallett M. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. // Stroke. - 2006 - №37 - p. 1471-1476. doi: 10.1161/01.STR.0000221233.55497.51.
53. Ruber T., Schlaug G., Lindenberg R. Compensatory role of the corticorubrospinal tract in motor recovery after stroke. // Neurology. - 2012 - №79(6) - p. 515-522. doi: 10.1212/WNL.0b013e31826356e8.
54. Stinear C.M., Barber P.A., Petoe M., Anwar S., Byblow W.D. The PREP algorithm predicts potential for upper limb recovery after stroke. // Brain. - 2012 - №135(Pt 8) - p. 2527-2535. doi: 10.1093/brain/aws146.
55. Belova A.N., Sheyko G.E., Shaklunova N.V., Israelyan Yu.A. Medicinskaya reabilitaciya pri detskom cerebral'nom paraliche: primenenie Mezhdunarodnoy klassifikacii funkcionirovaniya, ogranicheniy zhiznedeyatel'nosti i zdorov'ya detey i podrostkov. // Vestnik vosstanovitel'noy mediciny. - 2019 - №1(89) - str. 2-9.
56. Detskiy cerebral'nyy paralich (DCP). Klinicheskie rekomendacii. // Vestnik vosstanovitel'noy mediciny. - 2017 - №3(79) - str. 91-114.
57. Rothgangel A.S., Braun S.M., Mirror therapy: Practical protocol for stroke rehabilitation, Pflaum Verlag. // Munich; - 2013. doi: 10.12855/ar.sb.mirrortherapy.e2013.
58. Liu P., Li C., Zhang B., Zhang Z., Gao B., Liu Y., Wang Y., Hua Y., Hu J., Qiu X., Bai Y. Constraint induced movement therapy promotes contralesional-oriented structural and bihemispheric functional neuroplasticity after stroke. // Brain Res Bull. - 2019 - №150 - p. 201-206. doi: 10.1016/j.brainresbull.2019.06.003.
59. Caglayan A.B., Beker M.C., Caglayan B., Yalcin E., Caglayan A., Yulug B., Hanoglu L., Kutlu S., Doeppner T.R., Hermann D.M., Kilic E. Acute and Post-acute Neuromodulation Induces Stroke Recovery by Promoting Survival Signaling, Neurogenesis, and Pyramidal Tract Plasticity. // Front Cell Neurosci. - 2019 - №13 - p. 144. doi:10.3389/fncel.2019.00144.
60. Christiansen L., Perez M.A. Targeted-plasticity in the corticospinal tract after human spinal cord injury. // Neurotherapeutics. - 2018 - №15(3) - p. 618-627. doi: 10.1007/s13311-018-0639-y.