The aim. To identify the features of changes in the energy parameters of walking in patients with multiple sclerosis (MS) and their correction under the influence of the of the exoskeleton training course. Materials and methods. Authors of this article investigated electrical activity of two symmetrical thigh muscles - both m. rectus femoris and both m. biceps femoris during walking at different cadences - the slowest one, slow, decelerated, voluntary and fast in 3 patients with multiple sclerosis (MS). In addition to these parameters, the energy parameters of walking were also studied, namely, the average electrical activity of the muscles, equivalent to the power of the muscles, and the total integral for 10 m of the path, equivalent to the work of the muscles, taking into account both the pace and the length of the step. Results. The authors revealed the characteristic features of the energy parameters of walking in patients with multiple sclerosis, namely, a very slight increase in muscle power with an increase of walking velovity and the absence of the parabola second branch in the curve of the total integral for the distance of 10 m. On the basis of the received data authors make conclusion, that rezonance pnenomena are considerably diminished in patients with MS. The training exoskeleton walking method was developed, which includes the total training time, net walking time (walking time without rest), speed, pace and step length when walking in an exoskeleton, the number of steps taken by patients during the session and for the entire course. Remarkable improvement of the innervative structure of walking takes place after the course of training in the exoskeleton, that is revealed in considerable activity maximuma growth and in a number of cases - in apperance of these maxima, in concentration of these maxima in the locomotor cycle adequate phases, in appearance of the second maximum of activity in rectus femoris muscle and biceps femoris muscle in the swing phase of the locomotor cycle. Conclusion. All these positive changes were accompanied by an increase in the random walking speed and remarkable improvement of the energy walking parameters, namely, by considerable increase of the average electrical muscle activity and appearance of two parabola branches in the curve of the summary integral for the distance of 10 m, what points to appearance of the rezonance phenomena during walking in this patient.
rasseyannyy skleroz, elektricheskaya aktivnost' myshc, summarnyy integral, yavleniya rezonansa pri hod'be
1. Boyko A.N., Guseva M.E., Siverceva S.A. Nemedikamentoznye metody lecheniya i obraz zhizni pri rasseyannom skleroze. M. 2015: 239 s.
2. Shmidt T.E., Yahno N.N. Rasseyannyy skleroz. Rukovodstvo dlya vrachey. M. 2010: 267 s.
3. Boyko A.N., Guseva M.E., Siverceva S.A., Batysheva T.T. Zhizn' s rasseyannym sklerozom. Rukovodstvo dlya pacientov, chlenov ih semey i medicinskih rabotnikov. M. 2019: 376 s.
4. Batysheva T.T., Boyko A.N., Rusina L.R., Skvorcov D.V. Funkcional'naya dvigatel'naya simptomatika rasseyannogo skleroza po dannym biomehanicheskih issledovaniy. Medicinskaya reabilitaciya pacientov s patologiey oporno-dvigatel'noy i nervnoy sistem. M. 2006: 243-245.
5. Boyko A.N., Ovcharov V.V., Petrov A.V. Lechebnaya fizkul'tura dlya bol'nyh rasseyannym sklerozom. Metodicheskoe rukovodstvo. M. 2013: 88 s.
6. Klimov Yu.A., Boyko A.N., Popova N.F. Apparatnye metody reabilitacii dvigatel'nyh narusheniy u bol'nyh rasseyannym sklerozom. Detskaya i podrostkovaya reabilitaciya. 2012: T.2(19): 62-69.
7. Petrov A.V., Boyko O.V., Kulikova S.A., Boyko A.N. Apparatnye metody reabilitacii bol'nyh rasseyannym sklerozom v usloviyah stacionara. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. Specvypuski. 2015; 115(8-2): 72-73.
8. Gutierrez G.M., Chow J.W., Tillman M.D., MsCoy S.C., Castellano V., White L.J. Resistance training improves gait kinematics in persons with multiple sclerosis. Archieves of Physical and Medical Rehabilitation. 2005; 89(9): 1824-1829. https://doi.org/10.1016/j.apmr.2005.04.008
9. Lo A.C., Triche E.W. Improving gait in multiple sclerosis using robot-assisted, body-weight supported threadmill training. Neurorehabilitation and Neural Repair. 2008; V.22(6): 661-671. https://doi.org/10.1177/1545968308318473
10. Di Russo F., Berchicci M., Perri R.L. et al. A passive exoskeleton can push your life up: application on multiple sclerosis patients. PLOS One. 2013; 8(10): e77348. https://doi.org/10.1371/journal.pone.0077348
11. He Y., Eguren D., Luu T.P., Contreras -Vidal J.L. Risk management and regulation for lower limb medical exoskeleton: a review. Medical Devices: Evidence and Research. 2017; V.10: 89-107. https://doi.org/10.2147/MDER.S107134
12. Straudi S., Fanciulacci C., Martinuzzi C., Paravelli C., Rossi B., Chissari C. et al. The effects of robot-assisted gait training in progressive multiple sclerosis. Multiple Sclerosis Journal. 2016; 22(3): 373-384. https://doi.org/10.1177/1352458515620933
13. Shevchenko Yu.L., Daminov V.D., Gorohova I.G., Tkachenko P.V., Uvarova O.A., Kartashov A.V. Antigravitacionnye tehnologii vosstanovleniya hod'by v neyroreabilitacii. Klinicheskaya patofiziologiya. 2016; T.22(1): 134-141.
14. Kotov S.V., Lizhdvoy V.Yu., Sekirin A.B., Petrushanskaya K.A., Pis'mennaya E.V. Effektivnost' primeneniya ekzoskeleta ExoAtlet dlya vosstanovleniya funkcii hod'by u bol'nyh rasseyannym sklerozom. Zhurnal nevrologii i psihiatrii. 2017; 10(2): 41-46. https://doi.org/10.17116/jnevro201711710241-47
15. Kotov S.V., Isakova V.Yu., Lizhdvoy V.Yu., Sekirin A.B., Pis'mennaya E.V., Petrushanskaya K.A., Gevorkyan A.A. Metodicheskie rekomendacii po neyroreabilitacii bol'nyh rasseyannym sklerozom, imeyuschih narusheniya hod'by, s ispol'zovaniem ekzoskeleta ExoAtlet. M. 2018: 26 s.
16. Kotov S.V., Petrushanskaya K.A., Lizhdvoy V.Yu., Pis'mennaya E.V. Sekirin A.B, Sutchenkov I.A. Kliniko-fiziologicheskoe obosnovanie primeneniya ekzoskeleta «EkzoAtlet» pri hod'be bol'nyh s rasseyannym sklerozom. Rossiyskiy zhurnal biomehaniki. 2020; 24(2): 125-142. https://doi.org/10.15593/RJBiomeh/2020.2.03
17. Vitenzon A.S. Zakonomernosti normal'noy i patologicheskoy hod'by cheloveka. M. 1998: 271 s.
18. Vitenzon A.S., Petrushanskaya K.A. Ot estestvennogo k iskusstvennomu upravleniyu lokomociey. M. 2003: 448 s.
19. Skvorcov D.V. Diagnostika dvigatel'noy patologii instrumental'nymi metodami. Analiz pohodki. Stabilometriya. M. 2008: 638 s.
20. Slavuckiy Ya.L., Vitenzon A.S., Gricenko G.P., Petrushanskaya K.A., Miheeva N.E., Sutchenkov I.A. Issledovaniya elektricheskoy aktivnosti myshc pri normal'noy hod'be v raznyh tempah. Protezirovanie i protezostroenie. M. 1998; (95): 103-110.
21. Sarancev A.V. K kolichestvennomu analizu nekotoryh pokazateley energeticheskoy optimal'nosti hod'by. Protezirovanie i protezostroenie. M. 1973; (30): 84-92.
22. Winter D. Biomechanics and motor control of human movement. John Willey and Sons Inc. New-York. 1990: 277 p.
23. Crieve D. Gait patterns and the speed of walking. Bio-Medical engineering. 1968; V.3: 119-122.
24. Quanbury A.O., Milner M., Basmajan J.V. Human locomotion: E.M.G. activity of four leg muscles in various walking speeds and pace frequencies. Proccedings of the 23-rd Annual Conference on Engineering in Medicine and Biology. 1970; (4): 75 p.
25. Bouisset S., Goubel F. Integrated electromyographic astivity and muscle work. Journal of Applied Physiology. 1973; V.35(5): 695-702. https://doi.org/10.1152/jappl.1973.35.5.695
26. Yang J.F., Stein R.B., James K.B. Contribution of peripheral afferents to the activation of the soleus muscle during walking in humans. Experimental Brain Research. 1991; V.87: 679-687. https://doi.org/10.1007/BF00227094
27. Severin F.V., Shik M.L., Orlovskiy G.N. Rabota myshc i odinochnyh motoneyronov pri upravlyaemoy lokomocii. Biofizika. 1967; T.12(30): 660-667.