ACCUMULATION OF HEAVY METALS BY REPRESENTATIVES OF THE GENERIC COMPLEX IRIS L.
Rubrics: BIOLOGY
Abstract and keywords
Abstract (English):
Abstract. Technogenic emission of heavy metals (HM) leads to their accumulation and migration in the “soil – plant” system. Herbaceous perennials occupy a significant place among the landscaping components exposed to toxicants. The purpose of the research is to study the accumulation and distribution of elements of hazard class I in plants of the genus Iris L. Methods. The research was carried out in 2020–2021 on the basis of the South-Ural Botanical Garden-Institute UFRC RAS. Objects of study: soil of the site and plant organs (Iris orientalis, I. pseudacorus, I. sibirica, I. spuria subsp. carthaliniae). The elemental composition was determined by the atomic absorption method with electrothermal atomization. Scientific novelty. For the first time, the distribution of pollutants was evaluated using the biological absorption coefficient (BAC) and total cumulation in organs. Results. It has been shown that the content of mobile forms of HM in the soil does not exceed the MPC and averages: Cd – 0.03, As – 0.59, Pb – 0.48 mg/kg. It was found that the distribution of cadmium in organs depends on the species: both basipetal (I. orientalis) and acropetal accumulation of the element (I. spuria subsp. carthaliniae) are possible. Accumulation in above-ground organs exceeds cumulation in roots from 1.4 to 7.5 times. It was shown that the roots of I. orientalis, I. pseudacorus, I. spuria subsp. carthaliniae perform a barrier function and accumulate arsenic in amounts exceeding the MPC. The root system of I. sibirica does not prevent the entry of the toxicant, which is concentrated in the generative organs at a concentration exceeding the MPC. It was determined that the BAC of arsenic in the leaves of all species is less than 1. Lead uptake is species-independent, as evidenced by close total elemental values, similar organ distribution, and consistently high MPC. A predominantly above-ground concentration of the pollutant was revealed. The result of the regression analysis showed that the content of the mobile form of lead in the soil does not affect its accumulation in the leaves.

Keywords:
heavy metals, metalloid, lead, cadmium, arsenic, Iris L., MPC, biological absorption coefficient, translocation coefficient
Text
Publication text (PDF): Read Download
References

1. Reut A. A., Denisova S. G. Sravnitel’nyy analiz soderzhaniya tyazhelykh metallov v syr’ye nekotorykh predstaviteley roda Paeonia L. [Comparative analysis of the content of heavy metals in raw materials of some representatives of the genus Paeonia L.] // Agrarian Bulletin of the Urals. 2021. No. 11 (214). Pp. 45–55. DOI: 10.32417/1997-2021-214-11-45-55. (In Russian.)

2. Shabanova I. V., Neshchadim N. N. Vliyaniye agrotekhnologiy na soderzhaniye tyazhelykh metallov v pochve i kachestvo zerna ozimogo yachmenya [Influence of agrotechnologies on the content of heavy metals in soil and grain quality of winter barley] // Tavricheskiy vestnik agrarnoy nauki. 2019. No. 1 (17). Pp. 103–111. DOI: 10.33952/2542-0720-2019-1-17-103-111. (In Russian.)

3. Belozubova N. Yu., Zubkova V. M., Reutskaya V. V. Postupleniye svintsa, kadmiya i mysh’yaka v pastbishchnyye rasteniya v usloviyakh Volgogradskoy oblasti [The uptake of lead, cadmium and arsenic by pasture plants under the conditions of the Volgograd region] // Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta. 2016. No. 5 (139). Pp. 71–76. (In Russian.)

4. Bityutskiy N. P. Mikroelementy vysshikh rasteniy [Microelements of higher plants]. Saint Petersburg: Izd-vo S.-Peterb. un-ta, 2020. 368 p. (In Russian.)

5. Bashmakova E. B. Fiziologicheskiye mekhanizmy adaptatsii rasteniy mimulyusa krapchatogo (Mimulus guttatus DC.) k sovmestnomu deystviyu tsinka i nikelya: dis. …kand. biol. nauk [Physiological mechanisms of adaptation of speckled mimulus plants (Mimulus guttatus DC.) to the combined action of zinc and nickel: dissertation … candidate of biological sciences]. Moscow, 2017. 150 p. (in Russian.)

6. Giniyatullin R. Kh. Differentsiatsiya derev’yev v sanitarno-zashchitnykh lesnykh nasazhdeniyakh Sterlitamakskogo promyshlennogo tsentra [Differentiation of trees in sanitary-protective forest landings of the Sterlitamak industrial center] // Ekologiya i geografiya rasteniy i rastitel’nykh soobshchestv: materialy IV Mezhdunarodnoy nauchnoy konferentsii. Ekaterinburg, 2018. Pp. 177–180. (In Russian.)

7. Liu Q. Q, Zhang Y. X, Wang Y. J, Wang W. L, Gu C. S, Huang S. Z, Yuan H. Y, Dhankher O. P. Quantitative proteomic analysis reveals complex regulatory and metabolic response of Iris lactea Pall. var. chinensis to cadmium toxicity [e-resource] // Journal of Hazardous Materials. 2020. Vol. 400. URL: https://www.sciencedirect.com/science/article/abs/pii/S0304389420311547?via%3Dihub (date of reference: 12.03.2022). DOI: 10.1016/j.jhazmat.2020.123165.

8. Sedel’nikova L. L., Chankina O. V. Elementnyy sostav vegetativnykh organov sortov ‘Regal Air’ i ‘Speak To Me’ Hemerocallis hybrida [The elemental composition of the vegetative organs of sorts ‘Regal Air’ and ‘Speak To Me’ of Hemerocallis hybrida] // Chemistry of plant raw material. 2020. No. 1. Pp. 245–250. DOI: 10.14258/jcprm.2020014612. (In Russian.)

9. Reut A., Biglova A., Allayarova I. Accumulation of heavy metals in the organs of herbaceous plants [e-resource] // E3S Web of Conferences. Ser. “Actual Problems of Ecology and Environmental Management, APEEM 2021”. Mishref, 2021. URL: https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/41/e3sconf_apeem2021_02019.pdf (date of reference: 12.03.2022). DOI: 10.1051/e3sconf/202126502019.

10. Lavrishchev A. V., Litvinovich A. V. Stabil’nyy strontsiy v agroekosistemakh [Stable strontium in agroecosystems]. Saint Petersburg: Izd-vo Lan’, 2019. 192 p. (In Russian.)

11. Vetrova O. A. Agrotekhnicheskiye sposoby regulirovaniya urovnya nikelya v yagodakh zemlyaniki sadovoy [Agrotechnical methods for regulating the level of nickel in garden strawberries] // Contemporary Horticulture. 2018. No. 3. Pp. 139–146. DOI: 10.24411/2312-6701-2018-10318. (In Russian.)

12. Askerova L. A. Ekologicheskaya valentnost’ nekotorykh vidov irisov zapadnoy chasti Azerbaydzhana [Ecological valence of some species of irises of the western part of Azerbaijan] // Bulletin of Science and Practice. 2019. Vol. 5. No. 10. Pp. 50–55. DOI: 10.33619/2414-2948/47/06. (In Russian.)

13. Krasnaya kniga Respubliki Bashkortostan: v 2 t. T. 1: Rasteniya i griby [Red Data Book of the Bashkortostan Republic: in 2 volumes. Vol. 1: Plants and mushrooms] / Under the editorship of doctor of biological sciences V. B. Martynenko. Moscow: Studiya onlayn, 2021392 p. (In Russian.)

14. Trots N. M., Prokhorova N. V., Trots V. B., Akhmatov D. A., Chernyakova G. I., Gorshkova O. V., Vinogradov D. V., Kostin Ya. V. Tyazhelyye metally v agrolandshaftakh Samarskoy oblasti [Heavy metals in agricultural landscapes of the Samara region]. Kinel: Samarskaya gosudarstvennaya sel’skokhozyaystvennaya akademiya, 2018. 220 p. (In Russian.)

15. Metodika vypolneniya izmereniy massovoy doli elementov v probakh pochv, gruntov i donnykh otlozheniyakh metodami atomno-emissionnoy i atomno-absorbtsionnoy spektrometrii. M-MVI-80-2008 [Method for performing measurements of the mass fraction of elements in samples of soils, soils and bottom sediments using atomic emission and atomic absorption spectrometry methods. M-MVI-80-2008] [e-resource]. Saint Petersburg, 2008. URL: https://files.stroyinf.ru (date of reference: 10.01.2022). (In Russian.)

16. Metodika kolichestvennogo khimicheskogo analiza. Opredeleniye As, Pb, Cd, Sn, Cr, Cu, Fe, Mn i Ni v probakh pishchevykh produktov i pishchevogo syr’ya atomno-absorbtsionnym metodom s elektrotermicheskoy atomizatsiyey. No. M-02-1009-08 [Methods of quantitative chemical analysis. Determination of As, Pb, Cd, Sn, Cr, Cu, Fe, Mn and Ni in samples of food products and food raw materials by atomic absorption method with electrothermal atomization. No. M-02-1009-08] [e-resource]. Saint Petersburg, 2009. 20 p. URL: https://analit-spb.ru (date of reference: 12.01.2022). (In Russian.)

17. Zhuykov D. V. Sera i mikroelementy v agrotsenozakh (obzor) [Sulfur and microelements in agrocenoses (review)] // Achievements of Science and Technology of AIC. 2020. Vol. 34. No. 11. Pp. 32–42. DOI: 10.24411/0235-2451-2020-11105. (In Russian.)

18. OFS.1.5.3.0009.15. Opredeleniye soderzhaniya tyazhelykh metallov i mysh’yaka v lekarstvennom rastitel’nom syr’ye i lekarstvennykh rastitel’nykh preparatakh. Gosudarstvennaya farmakopeya Rossiyskoy Federatsii. XIV izd. T. II. [OFS.1.5.3.0009.15. Determination of the content of heavy metals and arsenic in medicinal herbal raw materials and medicinal herbal preparations. State Pharmacopoeia of the Russian Federation. XIV ed. Vol. II.]. Moscow, 2018. Pp. 1815–3262. (in Russian.)

19. Festin E. S., Salk C., Tigabu M., Syampungani S., Oden P. C. Biological traits of tropical trees suitable for restoration of copper-polluted lands // Ecological Engineering. 2019. No. 138. Pp. 118–125. DOI: 10.1016/j.ecoleng.2019.07.

20. Baybotayeva A. D., Kenzhaliyeva G. D., Bosak V. N. Tyazhelyye metally v pochvakh urbanizirovannykh territoriy [Heavy metals in the soils of urban areas] // Vestnik Belorusskoy gosudarstvennoy sel’skokhozyaystvennoy akademii. 2019. No. 4. Pp. 126–130. (In Russian.)

21. Baktybayeva Z. B., Suleymanov R. A., Valeyev T. K., Rakhmatullin N. R., Stepanov E. G., Davletnurov N. Kh. Ekologo-gigiyenicheskaya otsenka zagryazneniya atmosfernogo vozdukha na neftedobyvayushchikh i neftepererabatyvayushchikh territoriyakh Respubliki Bashkortostan i sostoyaniye zdorov’ya naseleniya [Ecological and hygienic assessment of atmospheric air pollution in the oil-producing and oil-refining territories of the Republic of Bashkortostan and the state of health of the population] // Public Health and Life Environment. 2020. No. 2 (323). Pp. 26–32. (In Russian.)

Login or Create
* Forgot password?