In order to determine the optimal retarding environment for long-term delays of radio frequency (RF) signals, data of the research and development for electric, acoustic-electronic, acoustic-optical, spin, superconducting circuits delay were summarized. It is concluded, that none of the existing classes do not fully meet modern requirements. Comparing technical features (Table 1) have been achieved, showed that in terms of bandwidth and maximum delay time the best option is provided with active electric delay circuit based on a digital radio frequency memory (DRFM), which disadvantages are EMC problems and high power consumption. Evaluations of limiting characteristics for a new approach based on fiber-optic delay circuit clearly show that a single-channel active fiber optic delay circuit (FODC) of RF signals can provide a delay time interval of 3.2 ns to 30 ms in the entire operating band from 50 MHz to 40 GHz.
retarding of radio frequency signals, fiber-optic delay circuit
1. Parker D., Zimmermann D. C. Phased arrays-part II: implementations, applications, and future trends // IEEE Transactions on Microwave Theory and Techniques. 50-th Anniversary Issue. 2002. T. 50, № 3. S. 688-698.
2. Frolov A. D. Radiodetali i uzly. M. : Vysshaya shkola, 1975. 440 s.
3. Belkin M. E., Kudzh S. A., Sigov A. S. Novye principy postroeniya radioelektronnoy apparatury SVCh-diapazona s ispol'zovaniem radiofotonnoy tehnologii // Rossiyskiy tehnologicheskiy zhurnal. 2016. № 1 (10). S. 4-20.
4. Mattey D. L., Yang L., Dzhons E. M. T. Fil'try SVCh, soglasuyuschie cepi i cepi svyazi. M.: Svyaz', 1971. 439 s.
5. A Mixed-signal ASIC for Digital RF Memory Applications // LNX Corp., Microwave Journal. 2004. Rezhim dostupa: http://www.microwavejournal.com/articles/print/1555-a-mixedsignal-asic-for-digital-rf-memory-applications (data obrascheniya: 29.11.2016).
6. Microwave acoustic materials, device, and applications / Weigel R. [et al.] // IEEE Transactions on Microwave Theory and Techniques. 2002. Vol. 50, № 3. P. 738-749.
7. Rechickiy V. I. Radiokomponenty na poverhnostnyh akusticheskih volnah. M. : Radio i svyaz', 1984. 112 s.
8. Kumar A. Antenna design with fiber optics. London : Artech House, 1996. 201 s.
9. Magnetostatic Waves / Adam J. D. [et al.] // Physics of Thin Films - Advances in Research and Development. T. 15. Thin Films for Advanced Electronic Devices. Boston : Academic Press, 1991. 141 s.
10. Mansour R. R. Microwave superconductivity // IEEE Transactions on Microwave Theory and Techniques. 2002. T. 50, № 3. S. 750-759.
11. Long Microwave Delay Fiber-Optic Link for Radar Testing / Newberg I. L. [et al.] // IEEE Transactions on Microwave Theory and Techniques. 1990. Vol. 38, № 5. P. 864-866.
12. Petermann K. Laser Diode Modulation and Noise. Dordrecht : Kluwer Academic Publishers, 1988. 310 s.
13. Dagli N. Wide-Bandwidth Lasers and Modulators for RF Photonics // IEEE Transactions on Microwave Theory and Techniques. 1999. T. 47, № 7. S. 1151-1171.
14. Kato K. Ultrawide-band/high-frequency photodetectors // IEEE Transactions on Microwave Theory and Techniques. 1999. T. 47, № 7. S. 1265-1281. 15. Sklyarov O. K. Volokonno-opticheskie seti i sistemy svyazi. M. : SOLON-Press, 2004. 272 s.
15. Belkin M. E., Yakovlev V. P. Vikselonika - novoe napravlenie optoelektronnoy obrabotki radiosignalov. Chast' 1. Komponentnaya baza // Elektronika : Nauka, tehnologiya, biznes. 2015. № 3. S. 92-112.
16. Belkin M. E., Belkin L. M. Issledovanie effektivnosti primeneniya poluprovodnikovogo lazernogo izluchatelya dlya peredachi mnogokanal'nogo analogovogo signala SVCh-diapazona // Nano- i mikrosistemnaya tehnika. 2009. № 11. S. 32-37.
17. Belkin M. E., Sigov A. S. Novoe napravlenie fotoniki - sverhvysokochastotnaya optoelektronika // Radiotehnika i elektronika. 2009. T. 54, № 8. S. 901-914.