, Russian Federation
Fryazino, Russian Federation
, Russian Federation
UDK 621.385.63 Лампы бегущей волны (ЛБВ). ЛБВ со статическим поперечным полем
Achievements, problems and features in the development of planar slow-wave systems for TWTs in the millimeter range are considered. In this article, a review of the characteristics of planar slow-wave systems for mm-band TWTs manufactured using photolithography is presented, which provides the opportunity for researchers and manufacturers to select high-tech designs of planar slow-wave systems for creating efficient broadband TWTs.
slow-wave structure, electron beam, diamond, TWT, dispersion, beam intercept
1. F. Andre, “Technology, Assembly, and Test of a W-Band Traveling Wave Tube for New 5G High-Capacity Networks,” IEEE Transactions on Electron Devices, vol. 67, no. 7, pp. 2919–2924, 2020, doi: 10.1109/ted.2020.2993243.
2. M. Y. Glyavin, T. Idehara, and S. P. Sabchevski, “Development of THz Gyrotrons at IAP RAS and FIR UF and Their Applications in Physical Research and High-Power THz Tech-nologies,” IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 5, pp. 788–797, 2015, doi: 10.1109/tthz.2015.2442836.
3. J. A. Dayton, C. L. Kory, and G. T. Mearini, “Microfabricated mm-wave TWT platform for wireless backhaul,” 2015 IEEE International Vacuum Electronics Conference (IVEC), 2015, doi: 10.1109/ivec.2015.7223799.
4. A. V. Galdetsky, L. A. Saprynskaya, I. M. Sokolova, I. P. Natura, and A. I. Korchagin, “Powerful millimeter wave TWT with precision manufacturing technology for matching structural elements,” Radiotekhnika, vol. 83, no. 7 (10), pp. 73–82, 2019. (In Russ.).
5. J. Wang, “UNIPICcode for simulations of high power microwave devices,” Physics of Plasmas, vol. 16, no. 3, p. 033108, 2009, doi: 10.1063/1.3091931.
6. “CST Studio Suite – Electromagnetic Field Simulation Software [Advertisement],” URL: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/? utm_source=cst.com&utm_medium=301& utm_campaign =cst [Accessed July 12, 2021].
7. “Understand, Predict and Optimize Physics-Based Designs and Processes with COMSOL Multiphysics [Advertisement],” URL: https://www.comsol.com/comsol-multiphysics [Accessed Sept. 15, 2021].
8. D. P. Starinshak, N. D. Smith, and J. D. Wilson, “Using COMSOL Multiphysics software to model anisotropic dielectric and metamaterial effects in folded-waveguide traveling-wave tube slow-wave circuits,” 2008 IEEE International Vacuum Electronics Conference, 2008, doi: 10.1109/ivelec.2008.4556469.
9. “HFSS 3D Electromagnetic Field Simulator for RF and Wireless [Advertisement],” [Online]. https://www.ansys.com/Products/Electronics/ANSYS-HFSS [Accessed Nov. 10, 2021].
10. T. M. Antonsen, Jr., B. Levush, CHRISTINE: A Multifrequency Parametric Simulation Code for Traveling Wave Tube Amplifiers. Washington: NRL Internal report, 1997. 39 p.
11. I. A. Chernyavskiy, D. Chernin, A. Vlasov, B. Levush, T. Antonsen, and J. Legarra, “Model-ing of the wide-band coupled-cavity TWTS with the large-signal code TESLA-CC,” 2011 Ab-stracts IEEE International Conference on Plasma Science, 2011, doi: 10.1109/plasma.2011.5993000.
12. I. A. Chernyavskiy, “Parallel Simulation of Independent Beam-Tunnels in Multiple-Beam Klys-trons Using TESLA,” IEEE Transactions on Plasma Science, vol. 36, no. 3, pp. 670–681, 2008, doi: 10.1109/tps.2008.920270.
13. I. Chernyavskiy, J. Petillo, A. Vlasov, B. Levush, and E. Wright, “End-to-end analysis using MICHELLE and TESLA codes,” 2009 IEEE International Conference on Plasma Science – Abstracts, 2009, doi: 10.1109/plasma.2009.5227554.
14. I. A. Chernyavskiy, “Validation study of the TESLA model for extended interaction klystron,” 2011 IEEE International Vacuum Electronics Conference (IVEC), 2011, doi: 10.1109/ivec.2011.5746889.
15. I. A. Chernyavskiy, “Modeling of a G-band extended interaction klystron using the large-signal code TESLA,” 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 2010, doi: 10.1109/icimw.2010.5613043.
16. I. A. Chernyavskiy, “TESLA modeling of the linear-beam amplifiers,” 2009 IEEE Interna-tional Vacuum Electronics Conference, 2009, doi: 10.1109/ivelec.2009.5193388.
17. S. J. Cooke, A. N. Vlasov, B. Levush, I. A. Chernyavskiy, and T. M. Antonsen, “GPU-accelerated 3D time-domain simulation of vacuum electron devices,” 2011 IEEE International Vacuum Electronics Conference (IVEC), 2011, doi: 10.1109/ivec.2011.5746997.
18. A. Vlasov, T. Antonsen, D. Chernin, B. Levush, and E. Wright, “Simulation of microwave devices with external cavities using MAGY,” Third IEEE International Vacuum Electronics Conference (IEEE Cat. No.02EX524), doi: 10.1109/ivelec.2002.999270.
19. A. N. Vlasov, S. J. Cooke, B. Levush, T. M. Antonsen, I. A. Chernyavskiy, and D. P. Cher-nin, “16.1: 2D modeling of beam-wave interaction in coupled cavity TWT with TESLA,” 2010 IEEE International Vacuum Electronics Conference (IVEC), 2010, doi: 10.1109/ivelec.2010.5503379.
20. A. A. Borisov, “The development of vacuum microwave devices in Istok,” 2011 IEEE Inter-national Vacuum Electronics Conference (IVEC), 2011, doi: 10.1109/ivec.2011.5747063.
21. J. A. Dayton, C. L. Kory, and G. T. Mearini, “Microfabricated mm-wave TWT platform for wireless backhaul,” 2015 IEEE International Vacuum Electronics Conference (IVEC), 2015, doi: 10.1109/ivec.2015.7223799.
22. G. Zaginaylov, “Full-wave analysis of the field distribution of natural modes in the rectangular waveguide grating based on singular integral equation method,” IEEE Transactions on Plas-ma Science, vol. 30, no. 3, pp. 1151–1159, 2002, doi: 10.1109/tps.2002.801613.
23. T. A. Karetnikova, “Linear theory of multisection broadband TWTs with an inhomogeneous spiral slow-wave system,” Izvestiya vuzov. Applied non-linear dynamics, vol. 20, no. 6, pp. 148–159, 2012. (In Russ.).
24. A. G. Rozhnev, N. M. Ryskin, T. A. Karetnikova [et al.], “Investigation of the characteristics of the retarding system of a millimeter-wave traveling-wave lamp with a strip electron beam,” Izv. Vuzov. Radiophysics, vol. 56, no. 8. pp. 601–613, 2013. (In Russ.).
25. N. A. Bushuev, “Calculation of eigenmodes of a diaphragmed waveguide for gyro-devices with slow waves,” Proceedings of the 4th IEEE Saratov – Penza Chapter Workshop "Ma-chine Design in Applied Electrodynamics and Electronics" (Saratov, Russia, September 26, 1999), pp. 87–91. (In Russ.).
26. A. G. Rozhnev, N. M. Ryskin, D. V. Sokolov [at al.], “New 2.5D code for modeling of non-linear multisignal amplification in a wideband helix traveling wave tube,” Fifth IEEE Interna-tional Vacuum Electronics Conference, (Monterey, California, April 27–29, 2004). pp. 144–145.
27. B. G. Goldenberg, “Basic principles of LIGA technology,” URL: www.ssrc.inp.nsk.su/CKP/ lections/Theory_of_LIGA-tecnology.pdf [Accessed Oct. 11, 2020]. (In Russ.).
28. J. M. Thevenoud, B. Mercier, T. Bourouina [at al.], “Drie Technology: from Micro to Nanoapplications,” URL: https://www.researchgate.net/publication/228781147_ [Accessed Oct. 12, 2017].
29. “MEMS and MOEMS Technology and Applications,” 2000, doi: 10.1117/3.2265068.
30. P. Siegel, “Terahertz technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 910–928, 2002, doi: 10.1109/22.989974.
31. B. Carlsten, “Technology development for a mm-wave sheet-beam traveling-wave tube,” IEEE Transactions on Plasma Science, vol. 33, no. 1, pp. 85–93, 2005, doi: 10.1109/tps.2004.841172.
32. D. Xu, “A Semi-Analytic Numerical Algorithm of Diamond Pillbox Windows for Terahertz Vacuum Electron Device Applications,” IEEE Electron Device Letters, vol. 42, no. 2, pp. 252–255, 2021, doi: 10.1109/led.2020.3045531.
33. S. Xin, J. Xu, H. Yin, Y. Wei, L. Yue, and W. Wang, “Research on a 3-D Microstrip Mean-der-line Slow-wave Structure Traveling Wave Tube,” 2021 22nd International Vacuum Elec-tronics Conference (IVEC), 2021, doi: 10.1109/ivec51707.2021.9722436.
34. J. M. Socuellamos, R. Letizia, R. Dionisio, and C. Paoloni, “Pillared Meander Line Slow Wave Structure for W-band Traveling Wave Tubes,” 2021 22nd International Vacuum Elec-tronics Conference (IVEC), 2021, doi: 10.1109/ivec51707.2021.9722426.
35. Y. Xie, N. Bai, X. Sun, P. Pan, J. Cai, and J. Feng, “Design and Fabrication of D-band Planar Double Microstrip Meander Line Slow Wave Structure,” 2021 22nd International Vacuum Electronics Conference (IVEC), 2021, doi: 10.1109/ivec51707.2021.9722535.
36. R. Mannette, B. Shaw, and F. Hendry, “An m-type backward-wave oscillator with photocop-ied delay line,” 1965 International Electron Devices Meeting, 1965, doi: 10.1109/iedm.1965.187554.
37. “Printed-circuit TWT’s promis cost cuts,” Electronics, vol. 45, no. 25, pp. 35–36, 1972.
38. A. W. Scott, “Next in tubes the printed circuit TWT,” Electronic Design, vol. 20, no. 26. pp. 28, 30, 1972.
39. E. A. Rakova, “Designing a W-band TWT with a moderating system based on a diamond heat sink,” Advances in modern radio electronics, no. 2, p. 51, 2016. (In Russ.).
40. A. V. Galdetsky and E. A. Bogomolova, “Planar type slow-motion system,” Patent of the Russian Federation No. 2653573, priority dated March 6, 2017. (In Russ.).