employee from 01.01.2014 until now
Moscow, Russian Federation
A group of velaroidal surfaces and surfaces of the velaroidal type belong to the class of "Translation Surfaces". In contrast to the direct translation surfaces, velaroidal surfaces are formed by curves of variable curvature so that the formed surface rests on straight lines of a flat rectangular contour. Only about a dozen velaroidal surfaces have been described and studied in the scientific and technical literature. Velaroidal surfaces are also formed by curves of variable curvature but supported by a flat oval or circular contour. A super ellipse can be taken as a flat contour. The contour may consist of fragments of two identical curves located symmetrically about the axis of symmetry. In Russia velaroidal surfaces are studied so far only in the Peoples' Friendship University of Russia (RUDN University), Moscow. They are popular with both research geometrists and students - architects and builders, who believe that these shapes can be used within parametric, nonlinear, evolutionary and generative architecture. The article provides information with reference to the extensive used bibliographic material on the geometry of known velaroidal surfaces and surfaces of the velaroidal type. Information on the construction and visualization of new velaroidal surfaces with an oval flat contour as a super ellipse, as well as with a frame and a guide super ellipse. The data on determination of the stress-strain state of thin shells with median surfaces in the form of the surfaces under consideration is given. The fields of practical application of velaroidal shells and velaroidal shells are indicated. As shown in the sources used, geometers and calculation engineers have solved almost all the issues related to the design of these shells. Architects use velaroidal shells rarely, mostly to cover industrial buildings. Enclosures of velaroidal type have been used only in draft designs and in diplom works of architecture students.
translation surfaces, velaroidal surface, velaroidal type surface, thin shell, fluffed plate, shell stability, industrial buildings, superellipse
1. Alborova L.A. Vozmozhnosti velaroidal'nyh obolochek [Tekst] / L.A. Alborova // Inzhenernye sistemy: Trudy nauchno-prakticheskoy konferencii s mezhdunarodnym uchastiem, posvyaschennoy 60-letiyu Rossiyskogo universiteta druzhby narodov: v 2 t. — / pod red. M.Yu. Mal'kovoy. – M.: RUDN, 2020. – S. 59-65 [ISBN 978-5-209-10101-7].
2. Berestova S.A. Geometriya samonesuschih pokrytiy na pryamougol'nom plane [Tekst] / S.A. Berestova, N.E. Misyura, E.A. Mityushov // Stroitel'naya mehanika inzhenernyh konstrukciy i sooruzheniy. – 2017. – № 4. – S. 15–18. – DOI: 10.22363/1815-5235-2017-4-15-18.
3. Gogoberidze Ya.A. Perekrytiya «Darbazi» [Tekst] / Ya.A. Gogoberidze – Tbilisi: Tehnika da shroma, 1950. – 278 s.
4. Gol'denveyzer A.L. Teoriya uprugih tonkih obolochek [Tekst] / A.L. Gol'denveyzer – M.: GTTI, 1953. – 544 s.
5. Ignat'ev S.A. Funkcional'nye vozmozhnosti sredy Wolfram Mathematica dlya vizualizacii krivyh liniy i poverhnostey [Tekst] / S.A. Ignat'ev, A.I. Folomkin, E.H. Muratbakeev // Geometriya i grafika. – 2021. – T. 9. – № 1. – S. 29 – 38. – DOI: 10.12737/2308-4898-2021-9-1-28-37.
6. Ignat'ev S.A. Elektronnaya obuchayuschaya sreda Moodle kak effektivnoe sredstvo organizacii obucheniya nachertatel'noy geometrii v usloviyah pandemii Covid-19 [Tekst] / S.A. Ignat'ev, A.I. Folomkin, Z.O. Tret'yakova, K.O. Glazunov // Geometriya i grafika. – 2020. – T. 8. – № 3. – S. 52 – 66. DOI: 10.12737/2308-4898-2020-52-66.
7. Kostyukova K.A., Harisova G.A., Matlahova A.S., Mahiyanova A.R., Shambina S.L. Perspektivy arhitekturnogo proektirovaniya na osnove velaroidal'nyh poverhnostey raznogo tipa [Tekst] / K.A. Kostyukova, G.A. Harisova, A.S. Matlahova, A.R. Mahiyanova, S.L. Shambina // Ekonomika i predprinimatel'stvo. – 2017. – № 6 (83). – S. 657-660.
8. Krivoshapko S.N. Pnevmaticheskie konstrukcii i sooruzheniya [Tekst] / S.N. Krivoshapko // Stroitel'naya mehanika inzhenernyh konstrukciy i sooruzheniy. – 2015. – № 3. – S. 45-53.
9. Krivoshapko S.N. Ob'emno- planirovochnye resheniya sportivno-razvlekatel'nogo kompleksa [Tekst] / S.N. Krivoshapko, E.M. Emel'yanova, I.A. Mamieva // Stroitel'naya mehanika inzhenernyh konstrukciy i sooruzheniy. – 2011. – № 4. – S. 46-49.
10. Krivoshapko S.N. Issledovanie poverhnostey velaroidal'nogo tipa s dvumya semeystvami sinusoid na kol'cevom plane [Tekst] / S.N. Krivoshapko, S.L. Shambina // Stroitel'naya mehanika inzhenernyh konstrukciy i sooruzheniy. – 2009. – № 4. – S. 9-12.
11. Mamieva I.A. O podgotovke specialistov po arhitekture, geometrii i raschetu bol'-sheproletnyh prostranstvennyh struktur i obolochek [Tekst] / I.A. Mamieva // Stroitel'stvo i rekonstrukciya. –2016. – № 5 (67). – S. 114-118.
12. Mihaylenko V.E. Poverhnosti perenosa, obrazuyuschie i napravlyayuschie kotoryh yavlyayutsya kongruentnymi krivymi [Tekst] / V.E. Mihaylenko, V.T. Shein // Prikladnaya geometriya i inzh. grafika. – Kiev, 1972. –– Vyp. 14. –– S. 15-20.
13. Neporada V.I. Velaroidal'nye obolochki v kontekste nelineynoy arhitektury [Tekst] / V.I. Neporada // Matematicheskie metody v arhitekture i dizayne: materialy mezhvuzovskoy nauchnoy konferencii / otv. red. V.G. Mosin. –– Samara: SGASU, 2013. –– S. 23-31.
14. Semenov V.S. Sovremennye prostranstvennye konstrukcii: sintez iskusstva, tehniki i nauki [Tekst]: ucheb. posobie. / V.S. Semenov – Bishkek: Izd-vo KRSU, 2010. – 130 s. [ISBN 978-9967-05-621-3].
15. Strashnov S.V. K voprosu o klassifikacii analiticheskih poverh-nostey [Tekst] / Strashnov S.V., Rynkovskaya M.I. // Geometriya i grafika. – 2022. – T. 10. – № 1. –S. 36-43 – DOI: 10.12737/2308-4898-2022-10-1-36-43.
16. Usataya T.V. Sovremennye podhody k proektirovaniyu izdeliy v processe obucheniya studentov komp'yuternoy grafike [Tekst] / T.V. Usataya, L.V. Deryabina, E.S. Reshetnikova // Geometriya i grafika. – 2019. – T. 7. – № 1. – S. 74 – 82. – DOI: 10.12737/article_5c91fd2bde0ff7.07282102
17. Shambina S.L. Velaroidal'nye poverhnosti i ih primenenie v stroitel'stve i arhitekture [Tekst] / S.L. Shambina, V.I. Neporada // Praci TDATU. – 2012. – Vip. 4. – T. 53. – S. 168-173.
18. Shtaerman Yu.Ya. Izgib vsparushennoy plity [Tekst] / Yu.Ya. Shtaerman, B.N. Bastatskiy – M.–L.: Gosenergo-izdat, 1960. – 37 s.
19. Chilton J., Chuang C.C. Rooted in Nature: Aesthetics, Geometry and Structure in the Shells of Heinz Isler// Nexus Network Journal 19, 763–785 (2017) https://doi.org/10.1007/s00004-017-0357-5.
20. Chronowicz A., Dennison A.C. Parabolic velaroidal shells// Magazine of Concrete Research. 1968, V. 20, I. 63, rp. 103-110 https://doi.org/10.1680/marc.1968.20.63.103.
21. Friaa Ahmed, Zenzri Hatem. On funicular shapes in structural analysis and applications// Eur. J. Mech. A. 1996, 15, I. 5, rr. 901-914 (bibl.: 7 nazv.).
22. Gabriele, Stefano; Marmo, Francesco; Varano, Valerio. About the funicularity of velaroidal shells// Proceedings of IASS Annual Symposia, IASS 2019 Barcelona Symposium: Shell Structures, pp. 1-8(8).
23. Gbaguidi Aïssè G.L. Influence of the geometrical researches of surfaces of revolution and translation surfaces on design of unique structures// Structural Mechanics of Engineering Constructions and Buildings. 2019, 15(4). rp. 308-314 DOI 10.22363/1815-5235-2019-15-4-308-314.
24. Gil-oulbe M., Markovich A., Tyekolo. Sinusoidal velaroidal shell – numerical modelling of the nonlinear buckling resistance// Journal of Fundamental and Applied Sciences. Physics. November 24, 2017, rp.1483-1492 doi: http://dx.doi.org/10.4314/jfas.v9i7s.132.
25. Gil-oulbe M., Shambina S.L., Dau T. The theoretical approach for the geometrically nonlinear buckling analysis of sinusoidal velaroidal shells// Structural Mechanics of Engineering Constructions and Buildings. 2017, I. 3, rr. 35-40.
26. Hadid H.A. Analysis of parabolic velaroidal shells with simply supported boundary condi-tions// J. Struct. Eng. 1982, 8, I. 4, pp. 111-118.
27. Hadid H.A., Lynn P.P. Bending analysis of parabolic velaroidal shells// Journal of the Structural Division. 1980, V. 106, I. 7, pp. 1609-1621 https://doi.org/10.1061/JSDEAG.0005478.
28. J. M. Martínez Jiménez, J. M. Martínez Valle, A. Martínez Valle, P. Martínez-Jiménez. General equations for a linear calculation of thin or moderately thick shallow shells// Blucher Mechanical Engineering Proceedings. May 2014, V. 1, 12 p. num. 1 [www.proceedings.blucher.com.br/evento/10wccm].
29. Karnevich V.V. Hydrodynamic surfaces with midship section in the form of the Lame curves. RUDN Journal of Engineering Researches. 2021, 22(4), pp. 323-328. DOI: 10.22363/2312-8143-2021-22-4-323-328.
30. Krivoshapko S.N., Gil-Oulbe Mathieu. Geometry and strength of a shell of velaroidal type on annulus plan with two families of sinusoids// International Journal of Soft Computing and Engineering (IJSCE). 2013, V. 3, I. 3, pp. 71-73.
31. Krivoshapko S.N. Tangential developable and hydrodynamic surfaces for early stage of ship shape design// Ships and Offshore Structures. 2022. Published online: 26 Apr. 2022. pp. 1-9. https://doi.org/10.1080/17445302.2022.2062165
32. Mihailescu M., Horvath I. Velaroidal shells for covering universal industrial halls// Acta techn. Acad. sci. hung. 1977, 85 (1-2), pp. 135-145.
33. Ramaswamy G.S. Innovative applications to funicular shells// Shells, Membranes and Space Frames. Proc. IASS Symp. Membrane Struct. and Space Frames, Osaka, 15–19 Sept., 1986, Vol. 1. Amsterdam e.a., 1986, pp. 313-320.
34. Shambina S.L. Theoretical approach for the geometrically nonlinear buckling analysis of sinusoidal velaroidal shells// Journal of Fundamental and Applied Sciences. Physics. September 27, 2017. Corpus ID: 125827184.
35. Tupikova E. and Berdiev M. The comparison of velaroidal shell structures of square plane loadbearing properties// 2020 IOP Conf. Ser.: Mater. Sci. Eng. 883 012218 IOP Conference Series: Materials Science and Engineering paper. 2020, 10 p. doi:10.1088/1757-899X/883/1/012218.
36. Weisstein, Eric W. "Superellipse." From MathWorld -- A Wolfram Web Resource. https://mathworld.wolfram.com/Superellipse.html (accessed 12 August 2022)