It is shown that in systems with electronic control of the fuel supply process, the absence of a rigid algorithm for controlling the injection law makes it possible to change the nature of the flow of the working cycle during engine operation, depending on the task. If the task is to achieve maximum engine efficiency, the fuel supply law can be implemented with a gentle increase in injection pressure in the initial stage. If it is necessary to minimize the content of nitrogen oxides, the law of supply with twn-phase fuel injection is implemented. The transition from one mode to another is carried out by changing the control algorithm, which takes time within 0.25 s. Using the method of planning the experiment, as well as the results of experiments carried out in a ship, a mathematical model was obtained to assess the effect of load, lead angle of fuel injection and two-phase fuel injection of 7RT-Flex82T main diesel engines on the value of specific concentrations of nitrogen oxides in their exhaust gases. The adequacy of the proposed mathematical model to the results of the experiment was verified by the Fisher criterion. Given that the mathematical model adequately describes the results of the experiment by the Fisher criterion, it was concluded that it can be used to assess the effect on the specific emissions of nitric oxide in the exhaust gases of the load, the timing of the injection timing and the mass of pre-injection of fuel from the main engines of the 7RT- Flex82T. The obtained mathematical model allows us to solve the problem of optimizing the values of the lead angle of fuel injection and the mass of fuel pre-injection depending on the load of the diesel engine in order to reduce specific emissions of nitrogen oxides to the values normalized by rule 13 Nitrogen oxides of Annex VI of MARPOL 73/78.
Marine diesel engines, specific emissions of nitrogen oxides, load, lead angle of fuel injection, pre-injection masses, experimental design, mathematical model
1. Voznickiy I.V. Sudovye dvigateli vnutrennego sgoraniya, tom 2 / I.V. Voznickiy, A.C. Punda. - M.: Morkniga, 2008. - 470 s.
2. Lashko V.A. Perspektivy razvitiya intellektual'nyh porshnevyh DVS // Elektronnoe nauchnoe izdanie «Uchenye zametki TOGU». - 2014. -Tom5.-№ 1.-S. 260-287.
3. Nikolaev N.I. Teplotehnicheskie i ekologicheskie parametry sovremennyh dizel'nyh i kotel'nyh ustanovok morskih sudov v ekspluatacii: monografiya / N.I. Nikolaev, H.H. Zinenko, V.E. Panamarev. - Novorossiysk: RIO GMU im. adm. F.F. Ushakova, 2017. - 154 s.
4. Ivanchenko A. A. Tehnika i tehnologiya neytralizacii v otrabotavshih gazah SEU : uchebnoe posobie / A. A. Ivanchenko. - SPb.: SPGUVK, 2012,- 111 s.
5. Galyshev Yu.V. Rabochie processy i toksichnost' otrabotavshih gazov sudovyh dizel'nyh i gazoporshnevyh dvigateley: uchebnoe posobie. Izd. vtoroe pererab. i dop. / Yu.V. Galyshev, A.B. Zaycev, A.A. Sidorov, A.Yu. Shabanov, I.A. Yakson. - SPb.: Sankt-Peterburgskiy politehnicheskiy universitet Petra Velikogo, 2019. -355 s.
6. Mel'nik G.V. Razvitie dvigatelestroeniya za rubezhom (po materialam kongressa CIMAC 2013) // Dvigatelestroenie. - 2013- № 3. - C. 39-53.
7. Hountalas T. Two-Stroke Marine Diesel Engine Variable Injection Timing System Performance Evaluation And Optimum Setting For Minimum Fuel Consumption At Acceptable NOx Levels / D.T. Hountalas, S. Raptotasios, A. Antonopoulos, S. Daniolos, I. Dolaptzis, M. Tsobanoglou // Proceedings of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, June 25-27,2014, Copenhagen, Denmark.
8. Sovremennye tendencii v organizacii rabochego processa dvigateley. URL: http : //mirmarine. net/dvs/toplivny e-sistemy/pokazateli-raboty-toplivnoj-apparatury-sovremennykh-dizelej/420-sovremennye-tendentsii-v-organizatsii-rabochego-protsessa-dvigatelej (data obrascheniya 28.05.2019).
9. Ahnazarova S. L., Kafarov V.V. Metody optimi zacii eksperimenta v himicheskoy tehnologii: ucheb. posobie,- 2-e izd., pererab. i dop. - M.: Vyssh. shk, 1985. - 327 s.
10. Turkin A.B. Modelirovanie rabochih processov malooborotnogo sudovogo dvigatelya dlya snizheniya emissii oksidov azota / A.B. Turkin, B.A. Turkin, A.Yu. Samoylenko // Morskie intellektual'nye sistemy. - 2018. - № 1 (39). -T.1.-S. 106-110.
11. Kondrat'ev S.I. Teoreticheskie osnovy upravleniya krupnotonnazhnymi sudami po kriteriyam bezopasnosti i energosberezheniya: dissertaciya na soiskanie uchenoy stepeni doktora tehnicheskih nauk,- Novorossiysk, 2004.
12. Karakaev A.B., Lukanin A.B., Hekert E.V. Razrabotka metodologii, metodov i modeley analiza vliyaniya razlichnyh variantov postroeniya struktury i rezhimov podderzhaniya i vosstanovleniya rabotosposobnosti sudovyh elektroenergeticheskih sistem (chast' 1). //Ekspluataciya morskogo transporta- 2016,- № 3(80).- C. 54-60.
13. Dubrovin R.G., Gerasidi V.V. Obzor struktury sovremennogo portovogo peregruzochnogo kompleksa po perevalke zernovyh kul'tur//Nauka i innovacii.-2009-T. 13-5,-S. 12.
14. Gerasidi V., Dubrovin R.G. Ekspluataciya turbokompressorov sudovyh dizel'-generatorov, rabotayuschih na tyazhelom toplive// Nauka i innovacii-2009-T. 14-S. 3.
15. Hekert E.V., Nikolaev N.I., Gerasidi V.V. Kontrol' sostoyaniya dvigatelya firmy "caterpillar" sat 3512 gruntonasosnoy ustanovki zemsnaryada po vibracionnym parametram.// Morskie intellektual'nye tehnologii,- 2018- № 1-1 (39).-S. 100-105.