DECARBONIZATION OF EXHAUST GASES OF MARINE DIESEL ENGINES BY OPTIMIZATION OF FUEL SUPPLY PARAMETERS
Abstract and keywords
Abstract (English):
The simulation of the working processes of the marine diesel engine MAN D&T MC series was carried out in order to reduce carbon dioxide emissions with exhaust gases. The purpose of the simulation was to find design and operational solutions that affect C02 emissions. When performing a computational study, a mathematical model of a combined internal combustion engine implemented in the DIESEL-RK computer program was used. The studied variables are the compression ratio, the advance angle and the duration of fuel injection, the values of which can be set without making significant changes to the engine design. A mathematical model has been obtained in the form of a regression equation that describes the influence of the studied parameters on the specific emission of carbon dioxide. To determine the coefficients of the regression equation, the planning of a factorial experiment of the second order is implemented. Using the obtained mathematical model, multi-parameter optimization of the values of the studied parameters for C02 emissions with exhaust gases can be performed. The possibility of using the obtained mathematical model to reduce the specific emissions of carbon dioxide with the exhaust gases of a marine diesel engine by 32% by choosing the optimal value of the compression ratio is shown.

Keywords:
marine diesel engine, exhaust gases, carbon dioxide, decarbonization, fuel supply parameters, mathematical model
Text
Publication text (PDF): Read Download
References

1. Zhivlyuk G. E. Perspektivnye tehnologii vodnogo transporta dlya ogranicheniya parnikovogo effekta / G.E. Zhivlyuk, A.P. Petrov // Vestnik Eosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova,- 202E- T. 13,- № 5. S. 730-743. DOI: 10.21821/2309-5180-2021-13-5730-743.

2. Modina M A, Khekert E V, Voskanian A A, Pismenskaia Yu V, Epikhin A I, Shkoda V V 2021 Bioindication and biomonitoring assessment of the state of atmospheric air and soil in the study area IOP Conf. Series: Earth and Environmental Science 867 012072.

3. Modina M A, Kheckert E V, Epikhin A I, Voskanyan A A, Shkoda V V, Pismenskaya Yu V 2021 Ways to reduce harmful emissions from the operation of power plants in special environmental control areas IOP Conference Series: Earth and Environmental Science 867 012104.

4. Stec M, Tatarczuk A, Iluk T, Szul M 2021 Reducing the energy efficiency design index for ships through a post-combustion carbon capture process International Journal of Greenhouse Gas Control 108 103333.

5. Epihin A.P. Koncepciya ekologicheskogo sovershenstvovaniya sudovyh energeticheskih ustanovok / A.P. Epihin, M.A. Modina, E.V. Hekert // Ekspluataciya morskogo transporta-2020-№ 3 (96).- S. 127-132.

6. Resolution MERS.203(62) 2011 Amendments to the Annex of the Protocol of 1997 to Amend the International Convention for the Prevention of Pollution from Ships, 1973, As Modified by the Protocol of 1978 Relating Thereto.

7. Chang S S, Wang S M 2014 Evaluating the effects of speed reduce for shipping costs and CO2 emission Transportation Research Hfrt D: Transport Environmtnt 31 pp 110-115.

8. Cariou P 2011 Is slow steaming a sustainable means of reducing CO2 emissions from container shipping? Transportation Research Hfrt D: Transport Environmtnt 16 pp 260-264.

9. Jindal S, Nandwana V P, Rathore N S, Vashistha V 2010 Experimental investigation of the effect of compression ratio and injection pressure in a direct injection diesel engine running on Jatropha methyl ester Applied Thermal Engineering 30 pp 442-448.

10. Zhong L, Sigh I P, Han J, Lai M-C, Henein N A 2003 Effect of cycle-to-cycle variation in the injection pressure in a common rail diesel injection system on engine performance SAE International SP-1739 pp. 19-28.

11. Sayin C, Ilhan M, Canakci M, Gumus M 2008 Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends Renewable Energy, in press. doi:10.1016/j.renene.2008.10.010.

12. Raheman H, Ghadge S V 2008 Performance of diesel engine with biodiesel at varying compression ratio and ignition timing Fuel 87 (12) pp. 26592666.

13. Al-Baghdadi MARS 2004 Effect of compression ratio. Equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel Renewable Energy 29 pp. 2245-2260.

14. Kegl V 2006 Numerical analysis of injection characteristics using biodiesel fuel Fuel 85 pp. 2377-2387.

15. Parlak A, Yasar H, Sahin V 2003 Performance and exhaust emission characteristics of a lower compression ratio LHR Diesel engine Energy Conversion and Management 44 pp. 163-175.

16. Turkin A V, Turkin V A, Samoilenko A Yu 2018 Ship low-speed engine working processes modeling to reduce the nitrogen oxides emission Marine intellectual technologies 1(39) 1 pp.106-110.

17. Ahnazarova C.L.., Kafarov V.V. Metody optimizacii eksperimenta v himicheskoy tehnologii. Ucheb. posobie. 2-e izd., pererab. i dop. M.: Vyssh. shk, 1985. 327 s.

18. Sovremennye trebovaniya v oblasti zagryazneniya vozdushnoy sredy oksidami sery s sudov / M. A. Modina, E. V. Hekert, A. I. Epihin [i dr.] // Ekspluataciya morskogo transporta. - 2021. - № 3(100).-S. 88-91.

19. Sostoyanie problemy i metody snizheniya vrednyh vybrosov sudovyh energeticheskih ustanovok / T. A. Makarevich, E. V. Hekert, Yu. S. Kuznecova [i dr.] // Ekspluataciya morskogo transporta. - 2022. - № 2(103). - S. 127-134.

20. Sovremennye trebovaniya v oblasti zagryazneniya vozdushnoy sredy oksidami sery s sudov / M. A. Modina, E. V. Hekert, A. I. Epihin [i dr.] // Ekspluataciya morskogo transporta. - 2021. -№3(100).-S. 88-91.

21. Kondratyev, S. I. Using telematics data to support effective solutions for tracking and monitoring the power system condition of unmanned vessels / S. I. Kondratyev, A. I. Epikhin // Journal of Physics: Conference Series, Novorossiysk, Virtual, 15-16 iyunya 2021 goda. - Novorossiysk, Virtual, 2021.


Login or Create
* Forgot password?