Vladivostok, Vladivostok, Russian Federation
Formation of ordered nanostructures of outer membrane porin from Yersinia pseudotuberculosis was carried out in two ways: from the proteoliposomes and by direct protein reconstitution in the pre-deposited phospholipid bilayer on the mica surface. The morphology of the structures obtained was analyzed by atomic force microscopy. It is shown that the efficiency of formation, size and degree of homogeneity of the porin domains essentially depend on the experimental conditions and lipopolysaccharide (LPS) content in protein samples. It was found that the porin domains derived from proteoliposomes had uneven distribution in the bilayer and the wide variation in diameter (20-100 nm). Spontaneous formation of extended regions of porin nanoparticles was observed in a weakly acidic solution when the LPS was included in the supported lipid bilayer or by using protein samples with a high content of LPS. The average height of porin domains was approximately the same (8-10 nm) and the average diameter was 75 and 30 nm, respectively.
porin, lipopolysaccharide, phospholipid bilayer, nanostructure, atomic force microscopy
1. Muller D.J., Engel A. Strategies to prepare and characterize native membrane proteins and protein membranes by AFM. Cur. Opin. Colloid Interface Science, 2008, vol. 13, pp. 338-350.
2. Hasler L, Heymann J.B., Engel A., Kistler J., Walz T. 2D Crystallization of Membrane Proteins: Rationales and Examples. J. Struct. Biology, 1998, vol. 121, pp. 162-171.
3. Wiese A., Schroder G., Brandenburg K., Hirsch A., Welte W., Seydel U. Influence of the lipid matrix on incorporation and function of LPS-free porin from Paracoccus denitrificans. Biochim. Biophys. Acta, 1994, vol. 1190, pp. 231-242.
4. Glik B., Pasternak D. Molekulyarnaya biotehnologiya: Principy i primenenie. M.: Mir, 2002, s. 589. [Glik B., Pasternak D. Molecular biotechnology. Principles and applications. Moscow: Mir, 2002, 589 p. (In Rus.)]
5. Novikova O.D., Vakorina T.I., Homenko V.A, Lihackaya G.N., Kim N.Yu., Emel'yanenko V.I., Kuznecova S.M., Solov'eva T.F. Vliyanie usloviy kul'tivirovaniya na prostranstvennuyu strukturu i funkcional'nuyu OmpF-podobnogo porina iz naruzhnoy membrany Yersinia pseudotuberculosis. Biohimiya, 2008, t. 73, № 2, s. 173-184.
6. Todt J.C., Roque W.J., McGroarty E.J. Effects of pH on bacterial porin function. Biochemistry, 1992, vol. 31, pp. 10471-10478.
7. Boivin A., Mesrobeanu J., Mesrobeanu L. Techniques pour la preparation des polysaccharides microbiens specifiques. C. R. Soc. Biol., 1933, vol. 113, pp. 490-492.
8. Schabert F. A., Engel A. Reproducible Acquisition of Escherichia coli Porin Surface Topographs by Atomic Force Microscopy. Biophis. J., 1994, vol. 67, pp. 2394-2403.
9. Milhiet P.-E., Gubellin F., Berquand A., Dosset P., Rigaud J.-L., Grimellec C., Levy D. High-Resolution AFM of Membrane Proteins Directly Incorporated at High Density in Planar Lipid Bilayer. Biophys. J., 2006, vol. 91, pp. 3268-3275.
10. Novikova O.D., Kim N.Yu., Luk'yanov P.A., Emel'yanenko V.I., Kuznecova S.M., Lihackaya G.N., Solov'eva T.F. Vliyanie rN na strukturu i funkcional'nuyu aktivnost' porina iz naruzhnoy membrany Yersinia pseudotuberculosis (iersinina). Soobschenie 2. rN-Inducirovannye konformacionnye intermediaty porina iz naruzhnoy membrany Y. pseudotuberculosis. Biol. membrany, 2007, t. 24, № 2, s. 159-168.
11. Sen K., Nikaido H. Lipopolysaccharide Structure Required for In Vitro Trimerization of Escherichia coli OmpF Porin. J. Bacteriol., 1991, vol. 173, pp. 926-928.