Along with the traditional mechanisms (calcium ions, cyclic nucleotides, decay products of phosphoinositides and protein kinase C), the mechanisms of regulation of the contractile function of smooth muscle cells (SMC) are increasingly being considered for the possibility of participation in this process of gasotransmitters (NO, H2S, CO). The relationship between the level of their content in the blood plasma and the development of various diseases is not accompanied by the same type of miotropic responses and requires studying the mechanisms of the influence of gasomediators on the SMC. The contribution of Na+/H+-exchange, Na+,K+,2Cl--cotransport to the mechanisms of the effect of gasotransmitters on the electrical and contractile activity of the SMC of the guinea pig ureter caused by an electrical stimulus was studied using the double sucrose bridge method. It turned out that the orientation of the contractile reactions of gasotransmitters against the background of non-sodium solutions or inhibitors of the Na+/H+-exchanger and Na+, K+, 2Cl--cotransport varies (NO, CO) or practically disappear (H2S).
signaling molecules, gasotransmitters, effector systems of smooth muscles
1. Szabo C. Hydrogen sulfide and its therapeutic potential. Nature Reviews, 2007, vol. 6, pp. 917-935.
2. Leffler Ch.W., Parfenova H., Jaggar J. H. Carbon monoxide as an endogenous vascular modulator. Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 301, pp. 1-11.
3. Wagner C.A. Hydrogen sulfide: a new gaseous signal molecula and blood pressure regulator. Journal of Nephrology, 2009, vol. 22 (2), pp. 173-176.
4. Heinemann S.H., Hoshi T., Westerhausen M., Schiller A. Carbon monoxide - physiology, detection and controlled release. Chem. Commun., 2014, vol. 50, pp. 3644-3660.
5. Gucakova C.V., Kovalev I.V., Birulina Yu.G., Cmagliy L.V., Petpova I.V., Nocapev A.V., Aleynik A.N., Oplov C.N. Vliyanie monokcida uglepoda i cepovodopoda na tpancmembpannyy ionnyy tpancpopt. Biofizika, 2017, t. 62, vyp. 2, c. 290-297. [Gusakova S.V., Kovalev I.V., Birulina Yu.G., Smagliy L.V., Petrova I.V., Nosarev A.V., Aleinyk A.N., Orlov S.N. The Effects of Carbon Monoxide and Hydrogen Sulfide on Transmembrane Ion Transport. Biofizika, 2017, vol. 62, no. 2, rr. 290-297. (In Russ.)]
6. Polhemus D.J., Lefer D.J. Emergence of Hydrogen Sulfide as an Endogenous Gaseous Signaling Molecule in Cardiovascular Disease. Circ. Res., 2014, vol. 114, pp. 730-737.
7. Kovalev I.V., Gusakova S.V., Birulina Yu.G., Smagliy L.V., Medvedev M.A., Orlov S.N., Kubyshkin A.V., Nosarev A.V. Rol' gazovyh posrednikov v regulyacii funkciy gladkih myshc: veroyatnye effektornye sistemy. Byulleten' sibirskoy mediciny, 2014, t. 13, № 6, c. 139-145. [Kovalev I.V., Gusakova S.V., Birulina Yu.G., Smagly L.V., Medvedev M.A., Orlov S.N., Kubishkin A.V., Nosarev A.V. Byulleten' sibirskoj mediciny, 2014, vol. 13, no. 6, pp. 139-145. (In Russ.)]
8. Wilkinson W.J., Kemp P.G. Carbon monoxide: an emerging regulator of ion channels. J. Physiol., 2011, vol. 589, no. 13, pp. 3055-3062.
9. Tang G. Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol. Pharmacol., 2005, vol. 68, pp. 1757-1764.