The effect of ranked hypoxia on the oxygen tension in arterial blood, venous blood ( PaO2, PvO2 ) and skeletal muscles ( PmO2 ) of mullet ( Liza aurata , Risso, 1810) was studied under the conditions of acute experiment. At the same time, the level of anaerobic processes in the skeletal muscles of fish was estimated basing on the lactate content and pH values in blood and muscle tissue. The control group of mullets was maintained under the oxygen tension of 160-162 kPa, temperature of 14-16оС and photoperiod of 12 hours of light: 12 hours of darkness. Experimental groups of fish were kept for 15 days at 85, 55 and 35 kPa at a similar water temperature and photoperiod. Oxygen tension was reduced by bubbling water with nitrogen. The most pronounced changes were observed during the adaptation of fish to 55 and 35 kPa. The values of PvO2 and PmO2 (first day) decreased by 28-33 and 19-31 %, respectively (p<0.01). In parallel, there was an increase in the lactate content, to a greater extent in the red muscle tissue, and a decrease in the pH of venous blood flowing from the skeletal muscles, which reflected the intensification of the anaerobic processes. Maintaining of a mullet at 55 kPa for 10-15 days resulted in nearly complete compensation of the changes mentioned above. The concentration of lactate in the muscles, PvO2 and blood pH was restored to the level of control values. At 35 kPa the normalization of the oxygen regime in the muscle tissue was not registered and the mullets died on the 3rd day of the experiment.
Liza aurata, hypoxia, oxygen tension, skeletal muscles, blood, lactate, pH, Liza aurata
1. Lauer N.V., Kolchinskaya A.Z. O sisteme regulirovaniya kislorodnyh rezhimov organizma na raznyh etapah ontogeneticheskogo razvitiya. Neyro-gumoral'naya regulyaciya v ontogeneze. Kiev: Nauk. dumka, 1964, s. 29-31. [Lauer N.V., Kolchinskaya A.Z. On the system of regulation of oxygen regimes of the organizm at different stages of ontogenetic development. Neuro-humoral regulation in ontogenesis. Kiev: Naukova dumka, 1964, pp. 29-31. (In Russ.)]
2. Shulman G.E., Love R.M. The Biochemical Ecology and Marine Fishes. Adv. Mar. Biol., 1999, vol. 36, p. 347.
3. Maina J.N. Fundamental structural aspects and feature in the bioengineering of the gas exchangers: comparative perspectives. Adv. Anat. Embriol. Cell Biol., 2002, vol. 163, no. III-XII, pp. 1-108.
4. Garey W.F., Rahn H. Gas tensions in tissues of trout and carp exposed to diurnal changes in oxygen tension of the water. J. Exp. Biol., 1970, vol. 52, no. 3, pp. 575-582.
5. Rombough P.J. Intravascular oxygen tension in cutaneously respiring rainbow trout (Oncorhynchus mykiss) larvae. Comp. Biochem. Physiol., 1992, vol. 101A, no. 1, pp. 23-27.
6. McKenzie D.J., Wong S., Randall D.J., Egginton S., Taylor E.W., Farrell A.P. The effects of sustained exercise and hypoxia upon oxygen tension in the red muscle of rainbow trout. J. Exp. Biol., 2004, vol. 207, pp. 3629-3637.
7. Soldatov A.A. Mass-transfer, utilization, and diffusion of oxygen in skeletal muscles of the stenohaline goby Gobius cobitus Pallas under conditions of hypoosmotic medium. J. Evolutionary Biochem. Physiol., 2012, vol. 49, no. 2, pp. 215-222.
8. Fanta E., Lucchiari P.H., Bacila M. The effect of environmental oxygen and carbon dioxide levels on the tissue oxygenation and the behavior of Antarctic fish. Comp. Biochem. Physiol., 1989, vol. 93A, no. 4, pp. 819-831.
9. Soldatov A.A., Parfenova I.A. Stehiometriya citohromov i napryazhenie kisloroda v skeletnyh myshcah morskih ryb. Ukr. bioh. zhurn., 2014, t. 96, № 2, s. 60-67. [Soldatov A.A., Parfenova I.A. The stoichiometry of cytochromes and oxygen tension in skeletal muscles of marine fish. Ukr. Biochem. J., 2014, vol. 96, no. 2, pp. 60-67. (In Russ.)]
10. Soldatov A.A., Parfenova I.A. Napryazhenie kisloroda v krovi, skeletnyh myshcah i osobennosti tkanevogo metabolizma kefali-singilya v usloviyah eksperimental'noy gipotermii. Probl. kriobiologii, 2009, t. 19, № 3, s. 290-300. [Soldatov A.A., Parfenova I.A. Oxygen tension in blood, skeletal muscles and features of tissue metabolism of mullet under experimental hypothermia. Cryobiology problems, 2009, vol. 19, no. 3, pp. 290-300. (In Russ.)]
11. Maslennikova L.S., Popova N.I. Soderzhanie kisloroda v myshechnoy tkani molodi simy i mal'my pri adaptacii k morskoy vode. 6 Vses. konf. po ekol. fiziol. i biohimii ryb, sent., 1985. Tez. dokl. Vil'nyus, 1985. c. 141-142. [Maslennikova L.S., Popova N.I. Oxygen content in muscle tissue of sima and malma during adaptation to sea water. 6 All-Union Conf. Ecol. Physiol. Biochem. Fish, Sept., 1985, Vilnius, 1985, pp. 141-142. (In Russ.)]
12. Houston A.H. Blood and circulation. Methods for fish biology. N-Y.: Amer. Fish. Society, 1990, pp. 273-334.
13. Soldatov A.A. Physiological Aspects of Effects of Urethane Anesthesia on the Organism of Marine Fishes. Hydrobiol. J. (Begell House), 2005, vol. 41, no. 1, pp. 113-126.
14. Berezovskiy V.A. Napryazhenie kisloroda v tkanyah zhivotnyh i cheloveka. Kiev: Naukova dumka, 1975, 276 s. [Berezovsky V.A. Oxygen tension in animal and human tissues. Kiev: Naukova Dumka, 1975, 276 pp. (In Russ.)]
15. Eschenko N.D. Opredelenie soderzhaniya molochnoy kisloty v tkanyah i aktivnosti laktatdegidrogenazy v tkanyah. Metody biohimicheskih issledovaniy (lipidnyy i energeticheskiy obmen). L.: Izd-vo LGU, 1982, c. 222-226. [Eschenko N.D. Determination of lactic acid content in tissues and activity of lactate dehydrogenase in tissues. Methods of biochemical studies (lipid and energy metabolism). Leningrad: LSU Publ. House, 1982, pp. 222-226. (In Russ.)]
16. Rebrov O.Yu. Statisticheskiy analiz medicinskih dannyh. Primenenie paketa prikladnyh programm STATISTIKA. M.: Media Sfera, 2002, 305 s. [Rebrov O. Statistical analysis of medical data. The use of the software package STATISTIKA. Moscow: Mediya Sfera, 2002, 305 p. (In Russ.)]
17. Perry S.F., Fritshe R., Kinkead R., Nilsson S. Control of catecholamins release in vivo and in situ in the atlantic cod (Gadus morhua) during hypoxia. J. Exp. Biol., 1991, vol. 155, pp. 549-566.
18. Thomas S., Perry S.F., Pehnee Y., Maxime V. Metabolic alkalosis and the response of the trout, Salmo fario, to acute severe hypoxia. Respir. Physiol., 1992, vol. 87, no. 1, pp. 91-104.
19. Peyraud-Waitzenegger M. Simultaneous modifications of ventilation and arterial PO2 by catecholamines in the eel, Anguilla anguilla L.: participation of a and b effects. J. Comp. Physiol., 1979, vol. 129B, no. 4. pp. 343-354.
20. Crocker C.E., Cech J.J. Effects of hypercapnia on blood-gas and acid-base status in the white sturgeon, Acipenser transmontanus. J. Comp. Physiol., 1998, vol. 168B, no. 1, pp. 50-60.
21. Soldatov A.A., Parfenova I.A. Plotnost' kapillyarnoy seti i diffuzionnye harakteristiki skeletnyh myshc donnyh i pelagicheskih ryb. Aktual'nye voprosy biologicheskoy fiziki i himii, 2016, t. 1, c. 19-23. [Soldatov A.A., Parfenova I.A. The density of the capillary network and diffusion characteristics of skeletal muscle of demersal and pelagic fish. Russian Journal of Biological Physics and Chemistry, 2016, vol. 1, pp. 19-23. (In Russ.)]
22. Bailey J.R., Sephton D.H., Driedzic W.R. Oxygen uptake by isolated perfused fish hearts with differing myoglobin concentration under hypoxic conditions. J. Mol. Cell. Cardiol., 1990, vol. 22, no. 10, pp. 1125-1134.
23. Londraville R.L., Sidell B.D. Ultrastructure of aerobic muscle in antarctic fishes may contribute to maintenance of diffusive fluxes. J. Exp. Biol., 1990, vol. 150, pp. 205-220.
24. Phleger C.F. Lipid synthesis by Antimora rostrata an abyssal codling from the Kona coast. Comp. Biochem. Physiol., 1975, vol. 52B, no. 1, pp. 97-99.
25. O'Brien K.M., Sidell B.D. The interplay among cardiac ultrastructure, metabolism and the expression of oxygen-binding proteins in Antarctic fishes. J. Exp. Biol., 2000, vol. 203, no. 8, pp. 1287-1297.
26. Chen H., Li D., Roberts G.J., Saldeen T., Mehta J.L. Eicosapentanoic acid inhibits hypoxia-reoxygenation-induced injury by attenuating upregulation of MMP-1 in adult rat myocytes. Cardiovasc. Res., 2003, vol. 59, no. 1, pp. 7-13.
27. Weinstein J.E., Oris J.T., Taylor D.H. An ultrastructural examination of the mode of UV-induced toxic action of fluoranthene in the fathead minnow. Pimephales promelas. Aquat. Toxicol., 1997, vol. 39, no. 1, pp. 1-22.