The nucleation and growth mechanisms of nanoparticles and micro-particles of semiconductor materials has not been fully disclosed and for sure. Therefore, a theoretical and experimental experiment is proposed to investigate in a first stage the nucleation mechanism trough the reaction mechanism. Zinc oxide micro-particles were synthesized from zinc acetate dihydrate and sodium hydroxide in the presence of ethanol in aqueous medium, via a microwave-assisted hydrothermal method. The subjacent molecular mechanism of the experimental process was researched by ab initio calculations with the 3-21G basis set. We found that the microwave radiation system is crucial during the synthesis for the nucleation mechanism of zinc oxide microparticles, since it provides the necessary energy to carry out the endothermic reaction where the Zn (OH ) 4 2- complex is produced, which in turn, through an exothermic and spontaneous reaction for the obtaining of zinc oxide (ZnO) as product of the reaction mechanism. SEM micrographs of the resulting microparticles show that ZnO has a branched morphology and the XRD pattern exhibit a crystal size to nanometric scale (31.3 nm ). Both theoretical and experimental results support the kinetics of the proposed reaction mechanism.
Reaction-mechanism, dioxide zinc, microwaves, AB INITIO, branched morphology
1. Morales M.A., Fernández-Cervantes I., Agustín-Serrano R., Ruíz-Salgado S., Sampedro M.P., Varela- Caselis J.L., Rubio E. Ag3PO4 microcrystals with complex polyhedral morphologies diversity obtained by microwave-hydrothermal synthesis for MB degradation under sunlight. Results in Physics, 2019, vol. 12, pp. 1344-1356. DOI: 10.1016/j.rinp.2018.12.082.
2. Wang J., Lee Y.-J., Hsu J.W.P. One-step synthesis of ZnO Nanocrystals in n-butanol with bandgap control: applications in hybrid and organic photovoltaic devices. J Phys Chem C, 2014, vol. 118, pp. 18417-18423.
3. Nair S., Sasidharan A., Divya Rani V.V., Menon D., Nair S., Manzoor K., Raina S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science: Materials in Medicine, 2008, vol. 20 (S1), pp. 235-241. DOI: 10.1007/s10856-008-3548-5.
4. McCune M., Zhang W., Deng Y. High efficiency dyesensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with ‘‘caterpillar-like’’ structure. Nano Lett, 2012, vol. 12, pp. 3656-3662.
5. Rycenga M., Cobley C.M., Zeng J., Li W., Moran C.H., Zhang Q., Xia Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews, 2011, vol. 111(6), pp. 3669-3712. DOI: 10.1021/cr100275d.
6. Sun Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002, vol. 298 (5601), pp. 2176-2179. DOI: 10.1126/science.1077229.
7. Batvandi M., Haghighatzadeh A., Mazinani B. Synthesis of Ag3PO4 microstructures with morphology-dependent optical and photocatalytic behaviors. Applied Physics A, 2020, vol. 126 (7). DOI: 10.1007/s00339-020- 03761-6.
8. Klingshirn C.F., Meyer B.K., Waag A., Axel H., Johannes M.M. Geurts Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer, 2010, pp. 9-10. ISBN 978-3-642-10576-0.
9. Baruah S., Dutta J., Dutta «Hydrothermal growth of ZnO nanostructures». Sci. Technol. Adv. Mater, (free download) 2009, vol. 10, p. 013001. Bibcode: 2009STAdM.10a3001B. DOI: 10.1088/1468-6996/10/1/013001.
10. Özgür Ü., Alivov Ya.I., Liu C., Teke A., Reshchikov M.A., Doğan S., Avrutin V., Cho S.-J. et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, vol. 98 (4), p. 041301. Bibcode: 2005JAP..98d1301O. DOI: 10.1063/1.1992666.
11. Hamdani F., Botchkarev A., Kim W., Morkoc H., Yeadow M., Gibson J.M., Tsen S.C.Y., Smith D.J., Evans K., Litton C.W., Michel W.C., Hemenger P. Appl. Phys. Lett., 1997, vol. 70, p. 467.
12. Nomura K., Ohta H., Ueda K., Kamiya T., Hirano M., Hosono H. Science, 2003, vol. 300, p. 1269.
13. Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P. Science, 2001, vol. 292, p. 1897.
14. Lee C.T., Su Y.K., Wang H.M. Thin Solid Films, 1987, vol. 150, p. 283.
15. Silva R.F. Filmes de óxido de zinco dopado com alumínio ou európio: Preparação e caracterização. Tese (Doutorado), Faculdade de Filosofia. Ciências e Letras de Ribeirão Preto, 2001.
16. Abrarov S.M., Yuldashev Sh.U., Lee S.B., Kang T.W. Suppression of the green photoluminescence band in ZnO embedded into porous opal by spray pyrolysis. Journal of Luminescence, 2004, vol.109, pp. 25-29.
17. Sousa V.C. et al.Combustion synthesized ZnO powders for varistor ceramics.International Journal of Inorganic Materials, 1999, vol. 1, pp. 235-241.
18. Wang J., Gao L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Communications, 2004, vol. 132, pp. 269-271.
19. Lima S.A.M., Sigoli F.A., Davolos M.R., Jafelicci Jr.M. Europium (III)-containing zinc oxide from Pechini method. Journal of Alloys and Compounds, 2002, vol. 344, pp. 280-284.
20. Sharma D., Sabela M.I., Kanchi S., Bisetty K., Skelton A.A., Honarparvar B. Green synthesis, characterization and electrochemical sensing of silymarin by ZnO nanoparticles: Experimental and DFT studies. Journal of Electroanalytical Chemistry, 2018, vol. 808, pp. 160-172. DOI: 10.1016/j.jelechem.2017.11.039.
21. Sun J., Wang H.-T., He J., Tian Y. Ab initio investigations of optical properties of the high-pressure phases of ZnO. Physical Review B, 2005, vol. 71 (12). DOI: 10.1103/physrevb.71.125132.
22. Serrano J., Romero A.H., Manjón F.J., Lauck R., Cardona M., Rubio A. Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Physical Review B, 2004, vol. 69 (9). DOI: 10.1103/physrevb.69.094306.
23. Saib S., Bouarissa N. Structural parameters and transition pressures of ZnO: ab-initio calculations. Physica Status Solidi (b), 2007, vol. 244 (3), pp. 1063-1069. DOI: 10.1002/pssb.200642441.
24. Binkley J.S., Pople, J.A., Hehre W.J. “Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements”. J. Am. Chem. Soc., 1980, vol. 102, pp. 939-47. DOI: 10.1021/ja00523a008.
25. Pietro W.J., Francl M.M., Hehre W.J., Defrees D.J., Pople J.A., Binkley J.S. “Self-Consistent Molecular Orbital Methods. 24. Supplemented small split-valence basis-sets for 2nd-row elements”. J. Am. Chem. Soc., 1982, vol. 104, pp. 5039-48. DOI: 10.1021/ja00383a007.
26. Frisch M.J. et al. Gaussian 09, revision A.1. Gaussian Inc., Wallingford, 2009.
27. Klamt A., Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans., 1993, vol. 2, (5), pp. 799-805. DOI: 10.1039/p29930000799.
28. Barone V., Cossi M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A, 1998, vol. 102 (11), pp. 1995-2001. DOI: 10.1021/jp9716997.
29. Liu T., Zhao L., Zhong R. DFT investigations of phosphotriesters hydrolysis in aqueous solution: a model for DNA single strand scission induced by N-nitrosoureas. Journal of Molecular Modeling, 2012, vol. 19 (2), pp. 647-659. DOI: 10.1007/s00894-012-1592-z.
30. Mikula H., Svatunek D., Skrinjar P., Horkel E., Hametner C., Fröhlich J. DFT study of the Lewis acid mediated synthesis of 3-acyltetramic acids. Journal of Molecular Modeling, 2014, vol. 20 (5). DOI: 10.1007/s00894-014-2181-0.
31. Ensuncho A.E., López J.M., Robles J. Estudio Computacional de la Cinética y Mecanismos de Reducción del Colorante Rojo Allura por Bisulfito de Sodio en Fase Acuosa. Información Tecnológica, 2013, vol. 24 (2), pp. 15-22. DOI: 10.4067/s0718-07642013000200003.
32. Bari A.R., Shinde M.D., Vinita D., Patil L.A. Effect of Solvents on the Particle Morphology of nanostructured ZnO. Indian Journal of Pure & Applied Physics, 2009, vol. 47, pp. 24-27.
33. Yung K., Ming H., Yen C., Chao H. Synthesis of 1D, 2D and 3D ZnO Polycrystalline Nanostructures Using Sol-Gel Method. Journal of Nanotechnology, 2012, pp. 1-8.
34. Haase M., Weller H., Henglein A. “Photochemistry and Radiation Chemistry of Colloidal Semiconductors. 23. Electron Storage on ZnO Particles and Size Quantization”. The Journal of Physical Chemistry, 1988, vol. 92, pp. 482-487.
35. Wu C., Qiao X., Chen J., Wang H., Tan F. A novel chemical route to prepare ZnO nanoparticles. Mater Lett., 2006, vol. 60 (15), pp. 1828-1832.
36. Smith G.D., Bell R., Borodin O., Jaffe R.L. A Density Functional Theory Study of the Structure and Energetics of Zincate Complexes. The Journal of Physical Chemistry A, 2001, vol. 105 (26), pp. 6506-6512.
37. Rev Soc Quím Perú, 2018, vol. 84 (1).
38. Gázquez J.L. Perspectives on the density functional theory of chemical reactivity. J. Mex. Chem. Soc., 2008, vol. 52, pp. 3-10.
39. Koopmans T. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica, 1934, vol. 1, pp. 104-113. DOI: 10.1016/s0031-8914(34)90011-2.
40. Parr R.G., Donnelly R.A., Levy M., Palke W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys., 1978, vol. 68, pp. 3801-3807. DOI: 10.1063/1.436185.
41. Parr R.G., Szentpály L.V., Liu S. Electrophilicity index. J. Am. Chem. Soc., 1999, vol. 121, pp. 1922-1924. DOI: 10.1021/ja983494x.
42. Laurent A.D., Jacquemin D. TD-DFT benchmarks: A review.International Journal of Quantum Chemistry, 2013, vol. 113 (17), pp. 2019-2039. DOI: 10.1002/qua.24438.
43. Srikant V., Clarke D.R. On the optical band gap of zinc oxide. Journal of Applied Physics, 1998, vol. 83 (10), pp. 5447-5451. DOI: 10.1063/1.367375.