Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
The intracellular space of red blood cells (RBC) includes 40% hemoglobin (Hb) molecules and 60% being water molecules. When the intracellular volume changes, which is possible when erythrocyte cells pass through the blood stream, the possibility of redistribution of intracellular components of the cell due to its volume changes is assumed. By methods of optical spectroscopy (non-invasive methods of infrared spectroscopy, Raman-spectroscopy, laser interference microscopy) changes of morphology, conformation and redistribution of Hb have been revealed in the human erythrocyte due to an increase in the ratio of [Na+]in and [K+]in when Na+/K+-ATPase is blocked in the cell. The decrease of activity of Na+/K+-ATPase by a ouabaine (3 mM) has been found to lead not only to an increase in [Na+]in cell but also to an increase in positive charge on the cytoplasmic surface of the RBC membrane. In these conditions, changes in the conformation of both the heme and globine parts of the cytoplasmic Hb have been identified. It has been shown that cell depolarization, together with cell volume change, leads to a decrease in packing density of Hb molecule, which may be related to sorption of intracellular Na+ (or Ca2+) c Hb, as well as increasing the amount of water molecules in the cell and redistributin Hb in the cell. These processes can lead to a change in the conformation of Hb, as well as to a redistribution and alteration of the conformation of the cytoplasmic Hb.
hemoglobin, conformation, Raman-spectroscopy, ouabain
1. Brearley C.J., Aronson J.K., Boon N.A., Raine A.E.G. Effects of haemodialysis and continuous ambulatory peritoneal dialysis on abnormalities of ion transport in vivo in patients with chronic renal failure. Clinical Science, 1993, vol. 85, no. 6, doi: 10.1042/cs0850725.
2. Kovalenko S.S., Parshina E.Yu, Yusipovich A.I., Maksimov G.V., Rubin A.B. Changes in the hemoporphyrin conformation in hemoglobin and NO-binding in erythrocytes under the action of insulin-like growth factor 1. Biophysics, 2014, vol. 59, no. 6, doi: 10.1134/S0006350914060062.
3. Ivanova S.M., Labetskaya O.I., Anisimov N.A., Maksimov G.V., Parshina E.Yu., Yusipovich A.I. Morfobioximicheskie pokazateli e`ritrocitov i sostoyaniya gemoporfirinov gemoglobina u obsleduemy`x v dinamike kratkovremennoj izolyacii v germoob`eme, Aviakosmicheskaya i e`kologicheskaya medicina, 2019, vol. 53, no. 2, doi: 10.21687/0233-528X-2019-53-2-62-67.
4. Franceshi L. de, Oliveri O., Girelli D., Lupo A., Bernich P., Corrocher R. Red blood cell cation transports in uraemic anaemia: evidence for an increased K/CI co‐transport activity. Effects of dialysis and erythropoietin treatment. European Journal of Clinical Investigation, 1995, vol. 25, no. 10, doi: 10.1111/j.1365-2362.1995.tb01955.x.
5. Weiler E.W., Saldanha L.F., Khalil-Manesh F., Prins B.A., Purdy R.E., Gonick H.C. Relationship of Na-K-ATPase inhibitors to blood-pressure regulation in continuous ambulatory peritoneal dialysis and hemodialysis. Journal of the American Society of Nephrology, 1996, vol. 7, no. 3, doi: 10.1681/ASN.V73454.
6. Katyukhin L.N., Kazennov A.M., Maslova M.N., Matskevich Y.A. Rheologic properties of mammalian erythrocytes: relationship to transport ATPases. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1998, vol. 120, no. 3, doi: 10.1016/S0305-0491(98)10035-4.
7. Krzesinski J.-M., Du F., Pequeux M.L., Rorive G.L. Krzesinski J.-M. Plasma Na-K ATPase inhibitor activity and intracellular ions during hemodialysis. The International Journal of Artificial Organs, 1993, vol. 16, no. 1, doi: 10.1177/039139889301600106.
8. Jorgensen P.L., Hakansson K.O., Karlish S.J.D. Structure and mechanism of Na, K-ATPase: functional sites and their interactions. Annual review of physiology, 2003, vol. 65, no. 1.
9. Yusipovich A.I., Zagubizhenko M.V., Levin G.G., Platonova A., Parshina E.Y., Grygorzcyk R., Maksimov G.V., Rubin A.B., Orlov S.N. Laser interference microscopy of amphibian erythrocytes: Impact of cell volume and refractive index. Journal of Microscopy, 2011, vol. 244, no. 3, doi: 10.1111/j.1365-2818.2011.03516.x.
10. Bryzgalova N.Y., Brazhe N.A., Yusipovich A.I., Maksimov G.V., Rubin A.B. Role of the state of erythrocyte cytoplasm in the change of hemoglobin affinity for oxygen. Biophysics, 2009, vol. 54, no. 308, doi: 10.1134/S0006350909030075.
11. Kozinecz GI., Simovart Yu.A. Poverxnostnaya arxitektonika kletok perifericheskoj krovi v norme i pri zabolevaniyax sistemy` krovi. E`stonskaya sel`skoxozyajstvennaya akademiya, 1984.
12. Mazeron P., Muller S., Azouzi H. El On intensity reinforcements in small-angle light scattering patterns of erythrocytes under shear. European Biophysics Journal, 1997.
13. Yusipovich A.I., Bryzgalova N.Y., Parshina E.Y., Lomakin A.G., Rodnenkov O.V., Levin G.G., Maksimov G.V., Rubin A.B. Evaluation of erythrocyte shape and status by laser interference microscopy. Bulletin of Experimental Biology and Medicine, 2008, vol. 145, no. 382, doi: 10.1007/s10517-008-0097-3.
14. Yusipovich A.I., Novikov S.M., Kazakova T.A., Erokhova L.A., Brazhe N.A., Lazarev G.L., Maksimov G.V. Peculiarities of studying an isolated neuron by the method of laser interference microscopy. Quantum Electronics, 2006, vol. 36, no. 9, doi: 10.1070/QE2006v036n09ABEH013408.
15. Din S. El, Aisha A., Bahay A.Z. El Effect of gamma irradiation on infrared spectra of rat hemoglobin. Radiation Physics and Chemistry, 1994, vol. 44, no.1-2, doi: 10.1016/0969-806X(94)90130-9.
16. Spigulis J., Krumins A., Millers D., Sternberg A., Muzikante I., Ozols A., Ozolinsh M. Micro-Raman scattering and infrared spectra of hemoglobin. 2008, doi: 10.1117/12.815796.
17. Orlov S.N. Membrannaya teoriya patogeneza arterialnoj gipertenzii: chto my znaem ob etom polveka spustya? Bulleten sibirskoj mediciny, 2019, vol. 18, no. 2, doi: 10.20538/1682-0363-2019-2-234–247.
18. Suglobova E.D., Spiridonov V.N., Borisov Yu.A., Lebedeva E.B., Gavrilenkov P.V. Biofizicheskie xarakteristiki membran e`ritrocitov u bol`ny`x, poluchayushhix lechenie regulyarny`m gemodializom. Rezistenstnost` k dejstviyu vneshnego kanaloformera. Nefrologiya, 1998.
19. Sidorenko S.V., Rebrov V.G., Verkhov D.G., Usanov A.D., Skripal A.V., Usanov D.A. Competitive Binding of K+ in the Presence of Na+ with Bovine Serum Albumin and Hemoglobin. Chemistry. Biology. Ecology, 2016, vol. 16, no. 3, doi: 10.18500/1816-9775-2016-16-3-279-284.
20. Kalyagina N.V., Marty`nov M.V., Ataullaxanov F.I. Matematicheskij analiz regulyacii ob``ema e`ritrocita cheloveka s uchetom uprugogo vozdejstviya obolochki e`ritrocita na obmenny`e processy`. Biologicheskie membrany, 2013, vol. 30, no. 2, doi: 10.7868/S0233475513010052.
21. Ataullaxanov F.I., Klyatkina A.B., Vitviczkij V.M., Pichugin A.V. Regulyaciya obyoma eritrocitov cheloveka. Rol kalievyx kanalov, aktiviruemy s kalciem. Biologicheskie membrany, 1993, vol. 10, no. 5.
22. Wiley J.S., McCulloch K.E. Calcium ions, drug action and the red cell membrane. Pharmacology & Therapeutics, 1982, vol. 18, no. 2, doi: 10.1016/0163-7258(82)90070-5.
23. Friederichs E., Farley R.A., Meiselman H.J. Influence of Calcium Permeabilization and Membrane-Attached Hemoglobin on Erythrocyte Deformability. American Journal of Hematology, 1992, vol. 41, doi: 10.1002/ajh.2830410306.
24. Peng Z., Li X., Pivkin I.V., Dao M., Karniadakis G.E., Suresh S. Lipid bilayer and cytoskeletal interactions in a red blood cell. Proceedings of the National Academy of Sciences, 2013, vol. 110, no. 33, doi: 10.1073/pnas.131182711.
25. Gasper R., Dewelle J., Kiss R., Mijatovic T., Goormaghtigh E. IR spectroscopy as a new tool for evidencing antitumor drug signatures. Biochimica et Biophysica Acta - Biomembranes, 2009, vol. 1788, no. 6.
26. Lasch P., Boese M., Pacifico A., Diem M. FT-IR spectroscopic investigations of single cells on the subcellular level. Vibrational Spectroscopy, 2002, vol. 28, no. 1, doi: 10.1016/j.bbamem.2009.02.016.
27. Slatinskaya O.V, Brazhe N.A., Orlov S.N., Maksimov G.V. The Role of Extracellular Ca2+ in Regulating the Distribution and Conformation of Hemoglobin in Erythrocytes. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, 2021, vol. 15, no. 3, doi: 10.1134/S1990747821030090.