Sevastopol, Sevastopol, Russian Federation
Sevastopol State University
Sevastopol, Sevastopol, Russian Federation
For the purpose of monitoring the water area of Sevastopol a line of devices for plankton macrofiltration in the size range from 2 mm to 2 microns has been developed. Twelve stations have been chosen from Inkerman to Fiolent with total length of 30 km. From piers far out at sea, 50-500 liters of seawater were sampled from the surface and filtered through a system of successive sieves 2 mm, 300, 150, 84 microns and a 2 μm fiber filter. In the winter of 2021-2022, when the seawater temperature was 8 °C, the diversity of plankton morphotypes was low. For all stations, the number of morphotypes increased as the size fraction decreased in the form of ecological pyramids. It was found that the richness of morphotypes in Inkerman is significantly lower than at other stations. Samples from neighboring stations may differ in the composition of morphotypes up to 50% (spatial section). Also, sea water samples taken at the same station with an interval of 1.5 months differed by 50% in the composition of morphotypes (time slice). The obtained results indicate that the developed technique of sequential filtration gives a visual representation of the state of meso-, micro- and nano-plankton in seawater samples.
monitoring, sequential filtration, plankton
1. Stoeckle B.C., Kuehn R., Geist J. Environmental DNA as a monitoring tool for the endangered freshwater pearl mussel (Margaritifera margaritifera L.): a substitute for classical monitoring approaches? Aquatic Conserv: Mar. Freshw. Ecosyst., 2016, vol. 26, no. 6, pp. 1120-1129.
2. Zhang Y., Pavlovska M., Stoica E., Prekrasna I., Yang J., Slobodnik J., Zhang X., Dykyi E. Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals. Environ Int., 2020, vol. 135, p. 105307.
3. Kawashima T., Yoshida M.A., Miyazawa H., Nakano H., Nakano N., Sakamoto T., Hamada M. Observing Phylum-Level Metazoan Diversity by Environmental DNA Analysis at the Ushimado Area in the Seto Inland Sea. Zoolog Sci., 2022, vol. 39, no. 1, pp. 157-165, doi: 10.2108/zs210073.
4. Beklemishev K.V. Ekologiya i biogeografiya pelagiali. M.: Nauka, 1969, 291 p. (In Russ.)
5. Kiselyov I.A. Plankton morej i kontinental'nyh vodoyomov. L.: Nauka, 1969, vol. 1, 658 p. (In Russ.)
6. Williamson S.J., Rusch D.B., Yooseph S., Halpern A.L., Heidelberg K.B., Glass J.I., Andrews-Pfannkoch C., Fadrosh D., Miller C.S., Sutton G., Frazier M., Venter J.C. The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS One, 2008, vol. 3, no. 1, p. e1456.
7. Wen L.S., Lee C.P., Lee W.H., Chuang A. An Ultra-clean Multilayer Apparatus for Collecting Size Fractionated Marine Plankton and Suspended Particles. J Vis Exp., 2018, vol. 134, p. 56811.
8. Kiselev I.A. Pancirnye zhgutikonoscy (Dinoflagellata) morej i presnyh vod SSSR. Opredel. po faune SSSR. L.: Izd-vo Zool. in-ta AN SSSR, 1950, № 33, 280 p. (In Russ.)
9. Proshkina-Lavrenko AI. Diatomovye vodorosli planktona CHyornogo morya. M.-L.: AN SSSR, 1955, 222 p. (In Russ.)
10. Morduhaj-Boltovskoj F.D. Opredelitel' bespozvonochnyh zhivotnyh fauny CHyornogo i Azovskogo morej, 3 toma. Kiev: "Kievskaya knizhnaya fabrika", 1969. (In Russ.)
11. Mollo P., Nuri A. Plankton. Uchebnoe posobie. per. s fr. V. I. Holodova. Sevastopol', 2019, 195 p. (In Russ.)
12. Ryabushko L.I. Potencial'no opasnye mikrovodorosli CHyornogo i Azovskogo morej. NANU, Institut biologii yuzhnyh morej NAN Ukrainy, Okeanologicheskij centr NANU, Operacionnyj Centr Mezhdunarodnogo Instituta v Ukraine, Sevastopol': EKOSI - Gidrofizika, 2003, 288 p. (In Russ.)
13. Mikaelyan A.S., Vedernikov V.I. Frakcionirovanie fitoplanktona: problemy i vozmozhnosti. Strukturnye i produkcionnye harakteristiki planktonnyh soobshchestv CHyornogo morya. Sb. Red. M.E. Vinogradov, M.V. Flint. M.: Nauka, 1989, pp. 53-64. (In Russ.)
14. Ruppert K.M., Kline R.J., Rahman M.S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 2019, vol. 17, p. e00547.
15. Cowart D.A., Murphy K.R., Cheng C.C. Environmental DNA from Marine Waters and Substrates: Protocols for Sampling and eDNA Extraction. Methods Mol Biol., 2022, vol. 2498, pp. 225-251.
16. Vinogradov M.E., Flint M.V. Struktura i produkcionnye harakteristiki planktonnyh soobshchestv CHyornogo morya. Sbornik nauchnyh trudov. M.: Nauka, 1989, 226 p. (In Russ.)
17. Mineeva N.M. Ekologo-fiziologicheskie aspekty formirovaniya pervichnoj produkcii planktona vodohranilishch Volgi. Dis. na soiskanie d.b.n. po VAK RF 03.00.16, Borok, 2003. (In Russ.)
18. Colombet J., Fuster M., Billard H., Sime-Ngando T. Femtoplankton: What's New? Viruses, 2020, vol. 12, no. 8, p. 881.
19. Dutse S.W., Yusof N.A. Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview. Sensors (Basel), 2011, vol. 11, no. 6, pp. 5754-5768.