employee
Voronezh, Voronezh, Russian Federation
UDK 656.13 Организация и эксплуатация автомобильного транспорта. Движение автомобилей. Общие вопросы
In the current conditions of instability and a rapidly changing economy, mathematical methods and intelligent information technologies used in making managerial decisions in various fields play an important role. It is especially necessary to approach carefully the process of securing stocks of products sold, which is necessary for the profit of a car service company. The company in its activity requires a wide range of cars spare parts. The lack of necessary parts can provoke a long downtime of cars waiting for the technical maintenance or the customer's refusal from service. Excess parts that have not been sold for a long time require increased storage costs. In this article, the FP-Growth algorithm is used to analyze the range of cars spare parts for dealer car service company, which solves the problem of finding associative rules. This task is based on searching in a large volume of source data for relationships in the form of if X, then Y. The FP-Growth algorithm differs from other methods of searching for associative rules by the procedure of constructing a tree of variants of sets of objects, which allows to reduce the search for possible variations and reduce the number of iterations. To implement the proposed algorithm, the Loginom Community analytical system was used. As a result, sets of spare parts were identified, often used together in the current repair of cars.
car service company, spare parts, assortment analysis, search for associative rules, FP-Growth algorithm, FP-tree, Loginom system
1. Babenko, I.V. Sovremennye tendencii formirovaniya sistemy integrirovannogo upravleniya zapasami / I.V. Babenko // Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Ekonomika. Sociologiya. Menedzhment. – 2019. – T. 9, № 6 (35). – S. 135-146.
2. Sazonova, S.A. Simulation of a transport standby for ensuring safe heat supply systems operation / S.A. Sazonova, S.D. Nikolenko, A.A. Osipov // IOP Conference Series: Materials Science and Engineering. International science and technology conference "FarEastCon-2019". - 2020. - P. 052004. -. DOI: 10.1088/1757-899X/753/5/052004.
3. Matveeva, E.A. Informacionnaya podderzhka deyatel'nosti logisticheskoy kompanii / E.A. Matveeva, K.A. Somov // Infokommunikacionnye tehnologii. – 2021. – T. 19, № 3. – S. 276-282. - DOI: 10.18469/ikt.2021.19.3.02.
4. Evdokimova, S.A. Segmentation of store customers to increase sales using ABC-XYZ-analysis and clustering methods / S.A. Evdokimova // Journal of Physics: Con-ference Series. - 2021. - S. 012117. - DOI: 10.1088/1742-6596/2032/1/012117.
5. Novikova, T.P. Povyshenie effektivnosti upravleniya predpriyatiyami avtomobil'nogo servisa putem primeneniya CALS-tehnologiy / T.P. Novikova, V.K. Zol'nikov, A.I. Novikov // Al'ternativnye istochniki energii v transportno-tehnologicheskom komplekse: problemy i perspektivy racional'nogo ispol'zovaniya. – 2014. – T. 1. – № 1(1). – S. 396-399.
6. Novikova, T.P. Matematicheskaya model' optimal'nogo raspredeleniya rabot v setevyh kanonicheskih strukturah / T.P. Novikova, O.V. Avseeva, A.I. Novikov // Fundamental'nye i prikladnye problemy tehniki i tehnologii. – 2013. – № 5(301). – S. 48-52.
7. Novikova, T.P. Algoritm resheniya zadachi optimal'nogo raspredeleniya rabot v setevyh kanonicheskih strukturah / T.P. Novikova, A.I. Novikov // Lesotehnicheskiy zhurnal. – 2014. – T. 4, № 4(16). – S. 309-317. – DOI: 10.12737/8515.
8. Novikova, T.P. K voprosu vybora metodov prinyatiya upravlencheskih resheniy v social'no-ekonomicheskih sistemah / T.P. Novikova // Al'ternativnye istochniki energii v transportno-tehnologicheskom komplekse: problemy i perspektivy racional'nogo ispol'zovaniya. – 2015. – T. 2, № 1(2). – S. 286-289. – DOI: 10.12737/14053.
9. Novikova, T.P. Matematicheskaya model' raspredeleniya trudovyh resursov pri tehnicheskoy ekspluatacii i remonte avtotransportnyh sredstv / T.P. Novikova, A.I. Novikov, S.V. Dorohin // Aktual'nye voprosy innovacionnogo razvitiya transportnogo kompleksa : Materialy 5-y Mezhdunarodnoy nauchno-prakticheskoy internet-konferencii, Orel, 18–20 aprelya 2016 g. – Orel, 2016. – S. 133-139.
10. Novikova, T.P. Production of complex knowledgebased systems: optimal distribution of labor resources management in the globalization context / T.P. Novikova, A.I. Novikov // Globalization and its socio-economic consequences : Proceedings, Rajecke Teplice, Slovak Republic / Edited by prof. Ing. Tomas Kliestik. Vol. Part I-VI. – Rajecke Teplice, Slovak Republic: University of Zilina, 2018. – Pp. 2275-2281.
11. Novikova, T.P. Management Specificity of the Labour Resources for Example Design-Center Projects / T.P. Novikova, A.I. Novikov // Ekonomicko-Manažérske Spektrum. – 2018. – Vol. 12, No 2. – P. 37-45.
12. Novikov, A.I. Upravlenie raspredeleniem trudovyh resursov v avtoservisnyh predpriyatiyah / A.I. Novikov, T.P. Novikova, S.V. Dorohin // Mir transporta i tehnologicheskih mashin. – 2017. – № 1 (56). – S. 126-131.
13. Novikov, A.I. Nanoelektronika: ocherednoy etap razvitiya elektronnoy tehniki / A.I. Novikov, T.P. Novikova, M.D. Evteev // Tehnika i tehnologii: puti innovacionnogo razvitiya : materialy 3-y Mezhdunarodnoy nauchno-prakticheskoy konferencii, Kursk, 29 iyunya 2013 g. – Kursk: «ZAO Universitetskaya kniga», 2013. – S. 140-142.
14. Novikov, A.I. Primenenie nanotehnologiy v avtomobil'nom transporte : uchebnoe posobie / A.I. Novikov. – Voronezh, 2016. – 156 s.
15. K voprosu razvitiya sistemy energoobrazovaniya dvigateley vnutrennego sgoraniya / A.I. Novikov, S.V. Dorohin, T.P. Novikova, A.G. Kashirskih // Al'ternativnye istochniki energii na avtomobil'nom transporte: problemy i perspektivy racional'nogo ispol'zovaniya : sbornik nauchnyh trudov po materialam Mezhdunarodnoy nauchno-prakticheskoy konferencii, Voronezh, 20–21 marta 2014 g. – Voronezh, 2014. – T. 1. – S. 272-274.
16. Svidetel'stvo o registracii programmy dlya EVM 2021667363. Informacionnaya sistema dlya uchastka po remontu avtotransporta i mehanizmov : № 2021666981 : zayavl. 28.10.2021 ; opubl. 28.10.2021 / S.A. Morozov, T.P. Novikova, A.I. Novikov ; zayavitel' i patentoobladatel' FGBOU VO «VGLTU».
17. Joshi, S. Customer centric sales analysis and prediction / S. Joshi, L.S. Rao, B. Ida Seraphim // International Journal of Engineering and Advanced Technology. – 2019. – V. 8(4). – Pp. 1749-1753.
18. Lisnawati, H. Data mining with associated methods to predict consumer purchasing patterns / H. Lisnawati, A. Sinaga // International Journal of Modern Education and Computer Science. – 2020. – V. 12(5). – Pp. 16-28. – DOI: 10.5815/ijmecs.2020.05.02.
19. Ünvan, Y.A. Market basket analysis with association rules / Y.A. Ünvan //Communications in Statistics - Theory and Methods. – 2021. – V. 50, I. 7. – Pp. 1615-1628. – DOI: 10.1080/03610926.2020.1716255.
20. Patacsil, F.F. Analyzing the relationship between information technology jobs advertised on-line and skills requirements using association rules / F.F. Patacsil, M. Acosta // Bulletin of Electrical Engineering and Informatics. – 2021. – V. 10(5). – Pp. 2771-2779. – DOI: 10.11591/eei.v10i5.2590.
21. Suryana, A. Application of data mining with association rules to review relationship between insured, products selection and customer behavior / A. Suryana, E. Yulianto // Universal Journal of Electrical and Electronic Engineering. – 2019. – V. 6(2). –Pp. 45-61. – DOI: 10.13189/ujeee.2019.061405.
22. Ramesh Kumar, G. Frequent item set mining with TM algorithm and tree creation / G. Ramesh Kumar, K. Arulanandam, A. Kavitha // Advances in Modelling and Analysis B. – 2018. – V. 61(4). – Pp. 171-175. – DOI: 10.18280/ama_b.610401.
23. Tang, H., Li, Z. Identifying domain knowledge in collaborative innovation communities: Based on hMETIS and FP-Growth / H. Tang, Z. Li // Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice. – 2018. – V. 38(8). – Pp. 2068-2078. – DOI: 10.12011/1000-6788(2018)08-2068-11.
24. Arasan, K.A. Generating association rules to identify adolesence behavior of students in higher educational institutions / K.A. Arasan, E. Ramaraj, S. Muthukumaran // International Journal of Scientific and Technology Research. – 2019. – V. 8(9). – Pp. 959-962.
25. Li, H. A scalable association rule learning heuristic for large datasets / H. Li, P.C.-Y. Sheu // Journal of Big Data. – 2021. – V. 8(1). – S. 86. – DOI: 10.1186/s40537-021-00473-3.
26. Collaborative filtering and association rule mining-based market basket recommendation on spark / F. Wang, Y. Wen, T. Guo [et al.] // Concurrency and Computation: Practice and Experience. – 2020. – V. 32(7). – S. e5565. – DOI: 10.1002/cpe.5565.
27. Xu, X. Applying data mining techniques for technology prediction in new energy vehicle: a case study in China / X. Xu, M. Gui // Environmental Science and Pollution Research. – 2021. – V. 28, I. 48. – Pp. 68300-68317. – DOI: 10.1007/s11356-021-15298-z.
28. Application of association rule: Apriori algorithm in E-Commerce / A. Das, S. Jana, P. Ganguly, N. Chakraborty // Innovations in Energy Management and Renewable Resources, IEMRE 2021. – C. 9386737. – DOI: 10.1109/IEMRE52042.2021.9386737.
29. Data mining using Apriori algorithm and linear regression in product recommendations / R. Laurentinus, O. Rizan, H. Sarwindah [et al.] // 4th International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2021. – 2021. – Pp. 217-223. – DOI: 10.1109/ISRITI54043.2021.9702791.
30. FP-growth algorithm for discovering region-based association rule in the IoT environment / H.-J. Jang, Y. Yang, J.S. Park, B. Kim // Electronics (Switzerland). – 2021. – V. 10 (24). – S. 3091. – DOI: 10.3390/electronics10243091.
31. Zhang, B. Optimization of FP-Growth algorithm based on cloud computing and computer big data / B. Zhang // International Journal of System Assurance Engineering and Management. – 2021. – V. 12, I. 4. – Pp. 853-863. – DOI: 10.1007/s13198-021-01139-2.
32. A guided FP-Growth algorithm for mining multitude-targeted item-sets and class association rules in imbalanced data / L. Shabtay, P. Fournier-Viger, R. Yaari, I. Dattner // Information Sciences. – 2021. – T. 553. – Pp. 353-375. – DOI: 10.1016/j.ins.2020.10.020.
33. Zhou, S. Data Mining and Analysis of the Compatibility Law of Traditional Chinese Medicines Based on FP-Growth Algorithm / S. Zhou // Journal of Mathematics. – 2021. – T. 2021. – S. 1045152. – DOI: 10.1155/2021/1045152.
34. Wu, Y. Building the electronic evidence analysis model based on association rule mining and FP-growth algorithm / Y. Wu, J. Zhang // Soft Computing. – 2020. – T. 24, I. 11. – Pp. 7925-7936. – DOI: 10.1007/s00500-019-04032-0.
35. Wang, X. Research on association rules of course grades based on parallel FP-Growth algorithm / X. Wang, G. Jiao //Journal of Computational Methods in Sciences and Engineering. – 2020. – V. 20(3). – Pp. 759-769. – DOI: 10.3233/JCM-194079.
36. Using K-means algorithm and FP-growth base on FP-tree structure for recommendation customer SME / M. Ali Syakur, B.K. Khotimah, E.M.S. Rochman, B.D. Satoto // Journal of Theoretical and Applied Information Technology. – 2018. – V. 96(4). – Pp. 1102-1113.
37. Ramya, V. Usage of dimension tree and modified FP-growth algorithm for association rule mining on large volumes of data / V. Ramya, M. Ramakrishnan // Journal of Engineering and Applied Sciences. – 2018. –V. 13(7). – Pp. 1670-1675.
38. Analiticheskaya platforma Loginom. – URL: https://loginom.ru/ (data obrascheniya: 20.03.2022).