Municipal solid waste (further MSW) occupy considerable sites of urban territories. Behaviour of “fresh” MSW is characterized by deformation hardening similarly to stress-strain state of pseudocohesive unsaturated soils reinforced by randomly oriented fibers. Distinctive feature of MSW is predominant orientation of reinforcing component in one horizontal direction, which is associated with the technology of waste deposing on the landfills. During first decades after placement processes of chemical and biological decay proceed in waste massif. After their completion MSW are classified as waste soil with maximal particle size not more than 20 mm. With the progress of biodegradation deformation hardening of MSW under loading is decreasing.
municipal solid waste, modelling, composite material.
1. Kristensen R.M. Vvedenie v mekhaniku kompozitov. – M.: MIR, 1982. – 336 s.
2. Buhan, P. de. Criterè de résistance pour le matèriau ‘terre armée’ / P. de Buhan, L. Siad, J. Salençon. Comptes Rendus de l’Académie des sciences. – Paris : French Academy of Sciences, 1986. – Tome 302. – Série II. – No. 7. – P. 377-381
3. Buhan P. de. Analyse de la stabilité des ouvrages en sols renforcés par une méthode d’homogénéisation / P. de Buhan, J. Salençon. Revue Française de Géotechnique. – Paris : Presses de l’Ecole Nationale des Ponts and Chaussées, 1987. – No.41. – P. 29-43.
4. Buhan P. de. Influence of soil-strip failure condition on the yield strength of reinforced earth / P. de Buhan, L. Siad. Journal Computers and Geotechnics. – Amsterdam: Elsevier, 1989a. – Iss.79. – Vol. 1-2. – P. 3-18.
5. Buhan P. de. Yield design of reinforced earth walls by a homogenization method / P. de Buhan, R. Mangiavacchi, R. Nova, G. Pellegrini, J. Salençon. Geotechnigue. – London: Thomas Telford Limited, 1989b. – Vol. 39. – Iss. 2. – P. 189-201.
6. Gabr, M.A. Geotechnical Properties of Municipal Solid Waste / Gabr, M.A., Valero, S.N.. Geotechnical testing Journal. – ASTM, 1995. – Iss. 18 (2). – P. 57-65.
7. Gueguin, M Stability analysis of homogenized stone column reinforced foundations using a numerical yield design approach [Electronic resource] / M. Gueguin, G. Hassen, P de Buhan. Computers and Geotechnics. – Amsterdam: Elsevier, 2015. – Vol. 64. – P. 10-19. <10.1016/j.compgeo.2014.11.001>. <hal-01087386>. – Access mode: https://hal-enpc.archives-ouvertes.fr/hal-01087386.
8. Hassen, G. A homogenization approach for assessing the yield strength properties of stone column reinforced soils [Electronic resource] / G. Hassen, M. Gueguin, P. de Buhan. European Journal of Mechanics - A/Solids. – Amsterdam: Elsevier, 2013. – Vol. 37. – P. 266-280. <10.1016/j.euromechsol.2012.07.003>. <hal00833484>. – Access mode: https://hal-enpc.archives-ouvertes.fr/hal-00833484.
9. Herakovich, C.T. Inelastic behaviour of composite materials. – New York: ASME, 1975.
10. Hill, R. Elastic properties of reinforced soils: Some theoretical principles.. Journal of the Mechanics and Physics of Solids. – Oxford: Pergamon Press. – 1963. – Iss.11(5). – P. 357-372.
11. Kockel, R. Scherfestigkeit von Mischabfallen in Hinblick auf die Standsicherheit von Deponien.. Schriftenreihe des Instituts fur Grundbau. – Ruhr-Universität, Bochum, Germany, 1995. – Heft 24. – P. 17-31.
12. Kockel, R. Stability Eva¬luation of Municipal Solid Waste Slopes / R. Kockel, H.L. Jessberger. Proceedings of 11th European Conference for Soil Mechanics and Foundation Engineering. – Copenhagen, Denmark: Danish Geotechni¬cal Society, 1995. – Vol.2. – P. 73-78.
13. Krase, V. Stability of municipal solid waste landfills. Dissertation submitted in candidacy for the degree of a Doctor-Ingenieur (Dr.-Ing.). – Braunschweig: TU Braunschweig, Faculty of Architecture, Civil Engineering and Environmental Sciences, 2008.
14. Manassero, M. Waste Disposal and Containment / M. Manassero, W.F. Van Impe, A. Bouazza. Kamon, M. (ed.) Proceedings of 2nd International Congress on Environmental Geotechnics. – Rotterdam: A.A.Balkema, 1996. – Vol.3. – P. 1425-1474.
15. Matasovic, N. Cyclic characterization of OII landfill solid waste / N. Matasovic, E. Kavazanjian, jr.,. Journal of Geotechnical and Geoenvironmental Engineering. – New York: ASCE, 1998. – Vol. 124. – Iss. 3. – P.197-210.
16. Michalowski, R.L. Continuum versus structural approach to stability of reinforced soils. R.L. Michalowski, A. Zhao. Journal Geotechnical Engineering. – New York: ASCE, 1995. – Vol. 121. – Iss. 2. – P. 152-162.
17. Paipetis, S.A. Mathematical modelling of composites. G.S. Holister (ed.) Development in composite materials - 2: Stress Analysis. – London: Applied Science Publishers Ltd, 1981. – P. 1-37.Sawicki, A. Rigid-plastic theory of reinforced earth. Archiwum Hydrotechniki. – Warsaw, 1979. – Iss.26(3). – P. 419-428.
18. Sawicki A. Engineering mechanics of elasto-plastic composites. Journal Mechanics of materials. – Amsterdam: Elsevier, 1983. – Vol. 2. – P. 217-231.
19. Sawicki, A. Mechanics of reinforced Soil. – Rotterdam: A.A.Balkema, 2000.
20. Sendeckyj, G.P. Mechanics of composite materials. – New York and London: Academic Press, 1974.
21. Zekkos (Zeccos), D.P. Evaluation of static and dynamic properties of Municipal Solid Waste. Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy [Electronic resource]. – Berkeley: University of California, Department of Civil and Environmental Engineering, 2005. – Access mode: http://waste.geoengineer.org/ZekkosPhDthesis.html.