, Russian Federation
UDK 628.14 Подача воды от водозаборных сооружений к распределительной сети (к объекту водоснабжения). Водоводы и водопроводные сети
To determine the factors having the greatest impact on the risk of occurrence of water hammers in above-ground installation of pipelines, typical of permafrost areas. Determine the velocities of shock wave front propagation in steel pipes for different types of steel pipes. To calculate parameters of possible water hammer depending on pipeline wall thickness. Methods: Method of characteristics used for solution of differential equations of unsteady motion of liquid is the basis of calculation model for determination of flow parameters at occurrence of water hammer. Results: On the basis of the calculations carried out in the article the diagrams of pressure changes in the pressure pipeline made of steel pipes are analysed. The influence of speed of propagation of water hammer wave and speed of steady movement of a liquid flow on character of flow of an unsteady process and size of pressure at water hammer in the pressure pipeline in above-ground laying is estimated. The use of measures to prevent water hammers, including combined ones, with the purpose of increasing their reliability is much cheaper than the replacement of damaged pipes and equipment, elimination of washouts by leaking water and loss of drinking water. Practical significance: In permafrost conditions, many factors complicate construction and operation of pressure hydrotransport systems. Elimination of consequences of emergency situations accompanied by water leakage is difficult in harsh climatic conditions, and thermal impact on soils is not always avoidable. Therefore when designing new pressure systems and reconstructing existing ones it is necessary to take into account possible unsteady processes in pressure pipes.
Pressure pipelines, water hammer, flow continuity, design, operation, permafrost, above-ground laying, steel pipes, polymer pipes
1. Terekhov L. D. Experimental study of soil thawing around shallow sewage pipelines in winter / L. D. Terekhov, S. B. Mayny, N. A. Shernikov // Water and Ecology. — 2019. — Iss. 24(4). Pp. 71–78. — DOI: 10.23968/2305-3488.2019.24.4.71-78.
2. Dikarevskiy V. S. Napornye vodovody zheleznodorozhnogo vodosnabzheniya / V.S. Dikarevskiy, I. I. Krasnyanskiy. — M.: Transport, 1978. — 360 s.
3. Petrova T. M. Geotechnical problems of transport construction and their solutions / T. M. Petrova, E. Y. Chistyakov // Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Technologies and Calculations — Proceedings of the International Conference on Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Technologies and Calculations, GFAC 2019. — 2019. — Pp. 250–253. — DOI: 10.1201/9780429058882-49.
4. Zhukovskiy N. E. O gidravlicheskom udare v vodoprovodnyh trubah / N. E. Zhukovskiy. — M.-L.: GITTL, 1949. — 104 s.
5. Moshnin L. F. Raschety gidravlicheskogo udara / L. F. Moshnin, E. T. Timofeeva. — M.; L.: Gosenergoizdat, 1952. — 200 s.
6. Smirnov D. N. Gidravlicheskiy udar v napornyh vodovodah / D. N. Smirnov, L. B. Zubov. — M.: Stroyizdat, 1975. — 122 s.
7. Dikarevskiy V. S. Gidravlicheskiy udar v napornyh truboprovodah vodootvedeniya / V. S. Dikarevskiy, O. G. Kapinos, N. V. Tvardovskaya // Vestnik RAASN. — 2004. — Vyp. 8. — S. 152–156.
8. Lyudeke H.-Y. Gidroudar: prichiny, analiz i sposoby predotvrascheniya / H.-Y. Lyudeke, B. Kote, K. Pauli // Vodosnabzhenie i sanitarnaya tehnika. — 2015. — № 8. — S. 62–69.
9. Kapinos O. G. Uchet razryvov sploshnosti potoka pri gidravlicheskih udarah na etape proektirovaniya napornyh truboprovodov iz polimernyh materialov / O. G. Kapinos, N. V. Tvardovskaya // Izvestiya Peterburgskogo universiteta putey soobscheniya. — SPb.: PGUPS, 2022. — T. 19. — Vyp. 1. — S. 116–126.
10. Kapinos O. G. Posledstviya gidravlicheskih udarov, soprovozhdayuschihsya razryvami sploshnosti potoka zhidkosti / O. G. Kapinos, N. V. Tvardovskaya // Izvestiya Peterburgskogo universiteta putey soobscheniya. — SPb.: PGUPS, 2011. — Vyp. 3(28). — S. 167-176.
11. Kapinos O. G. Vliyanie vybrannogo materiala trub na velichinu davleniya v truboprovode pri vozmozhnom gidravlicheskom udare / O. G. Kapinos, N. V. Tvardovskaya // Izvestiya Peterburgskogo universiteta putey soobscheniya. — 2008. — № 2(15). — S. 112–119.
12. Terehov L. D. Problemy iznoshennyh truboprovodov Dal'nego Vostoka Rossii i puti ih vosstanovleniya / L. D. Terehov, N. V. Tvardovskaya, A. V. Fedorchuk i dr. // Yakovlevskie chteniya — 2022: Sistemy vodosnabzheniya i vodootvedeniya. Sovremennye problemy i resheniya. Sbornik dokladov uchastnikov XVII Mezhdunarodnoy nauchno-tehnicheskoy konferencii, posvyaschennoy pamyati akademika RAN S. V. Yakovleva. — M., 2022. — S. 54–61.
13. GOST 8734—75. Truby stal'nye besshovnye holodnodeformirovannye. — M., 1996. — 20 s.
14. GOST 10704—91. Truby stal'nye elektrosvarnye pryamoshovnye. — M., 2007. — 12 s.
15. Prodous O. A. Tehnicheskoe regulirovanie znacheniy gidravlicheskih parametrov nenovyh metallicheskih trub dlya prodleniya perioda ih ispol'zovaniya / O. A. Prodous, L. D. Terehov, P. P. Yakubchik i dr. // Izvestiya Peterburgskogo universiteta putey soobscheniya. — SPb.: PGUPS, 2021. — T. 18. — Vyp. 3. — S. 421–427.