The tragedy for the pioneers of non-Euclidean geometry (N. Lobachevsky and J. Boyai) was their quarrel with the scientific tradition. Figuratively speaking, in the judgment of the scientific world they could not provide proof of their views, and substantive law of science was not on their side despite the efforts of such an influential advocate as Karl Friedrich Gauss. They lost the civil process to the scientific layman, who sincerely believed that the earth is flat. Traditionally mathematical logic considers a new idea proven, if it is derived by inference from already proven ones, or recognized as obvious, or recognized without proof (postulates). Yet the founders of non-Euclidean geometry could not imagine such traditional evidence at all desire, because it had not yet been developed, and most importantly respective starting points (axioms, postulates, and theorems) had not been recognized by mathematicians. The paper outlines the original concept of non-Euclidean geometries. Hyperbolic geometry of Lobachevsky is considered based on viewing the sphere as a surface of zero curvature. In this case, the plane will have a real curvature properties of hyperboloid or a pseudosphere depending on the absolute and space anisotropy index, which replaces the concept of curvature of space; i.e. the notion of the curvature of the surface is converted to purely analytical attributes. Parabolic geometry of Euclid with degenerate absolute becomes a special case of geometries with non-degenerate absolute. The geometry of Riemann having the absolute of imaginary surface with negative Gaussian curvature at all points is declared not real but imaginary, since, according to the authors, it is impossible for plotting. References to textbooks of mechanics and mathematics departments of universities.
geometry, non-Euclidean geometry, Lobachevskian geometry.
В журнале «Геометрия и графика» стало уже традицией рассказывать о жизни и деятельности ученых в области геометрии и графики [2–4; 9; 14]. В настоящей работе речь пойдет о неевклидовой геометрии Николая Ивановича Лобачевского (1792–1856).
1. Введение
Трагедия первопроходцев неевклидовой геометрии (Н. Лобачевского, умершего в нищете и непризнанным отечественной наукой, и Я. Бойяи, умершего фактически сошедшим с ума на почве признания Лобачевского немецкой наукой) заключалась в их ссоре с научной традицией. Образно говоря, они на суде научного мира не могли представить доказательства своих взглядов, и материальное право в области науки оказалось не на их стороне, несмотря на усилия такого авторитетного адвоката, каким был для них Карл-Фридрих Гаусс. Они проиграли гражданский процесс ученому обывателю, искренне читающему, что земля плоская.
1. Apollonij Pergskij. Konicheskie sechenija, s kommentarijami Jevtokija [Conic section]. Izvestija Severo-Kavkazskogo gos. universiteta, 3(15), 1928, pp. 130–152.
2. Voloshin A.Je., Vyshnepol´skij V.I., Curanov N.M. Uchenyj, izobretatel´, zavedujushhij kafedroj [Scientist, Inventor, Head of Chair]. Geometrija i grafika [Geometry and graphics]. 2013. V. 2, I. 1, pp. 58–65. DOI: 10.12737/3850. (in Russian).
3. Vyshnepol´skij V.I. Vyshnepol´skij Igor´ Samuilovich (11.04.1918—17.01.1999) [Vyshnepolsky Igor´ Samuilovich (11.04.1918–17.01.1999)]. Geometrija i grafika [Geometry and graphics]. 2013. V. 2, I. 2, pp. 58–66. DOI: 10.12737/5593. (in Russian).
4. Vyshnepol´skij V.I. Zavedujushhij kafedroj Nikolaj Illarionovich Noskov (nauchnaja biografija) [Nikolai I. Noskhov – Head of the Department (Scientific Biography)]. Geometrija i grafika [Geometry and graphics]. 2013, V. 2, I. 4, pp. 49–56. DOI: 10.12737/8297. (in Russian).
5. Klassiki estestvoznanija. Princip otnositel´nosti [Classics of natural history. The principle of relativity]. Leningrad, ONTI–GROL Publ., 1935.
6. Klejn Feliks. Lekcii po neevklidovoj geometrii, izdannye v obrabotke V. Rozemana [Lectures on non-Euclidean geometry]. Berlin, 1928. Russkij perevod: F.Klejn. Neevklidova geometrija, perevod N.K. Brushlinskogo. Moscow, Leningrad, ONTINKTP-SSSR Publ., 1936.
7. Lobachevskiy N.I. Voobrazhaemaja geometrija [Imaginary geometry]. Kazan´, Izd. Kazanskogo universiteta Publ., 1835.
8. Nachala Evklida s pojasnitel´nym vvedeniem i tolkovanijami prof. M.E. Vashhenko-Zaharchenko [Euclidean Elements]. Kiev, Imperatorskij Universitet Sv.Vladimira Publ., 1880.
9. Nesterenko L.A., Burlov V.V., Soljanikova E.A., Kikta A.A. Ljubov´ k nachertatel´noj geometrii i strast´ k vysote [Love of descriptive geometry and passion for height]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 3–4, pp. 57–60. DOI: 10.12737/1236. (in Russian).
10. Ob osnovanijah geometrii. Sbornik [About the foundations of geometry]. Moscow, Gos. Izd. Tehniko-Teoret. Lit. Publ., 1956, pp. 180–212, 342–365.
11. Lobachevskiy N.I. O nachalah geometrii [On the basis of geometry]. St. Petersburg, T-vo M.O.Vol´f Publ., 1908.
12. Ptolemej Klavdij. Al´magest [The Almagest]. Works in 13 volumes. Moscow, Nauka Publ., 1998.
13. Pushkin A.S. Polnoe sobranie sochinenij v 6 tomah [Complete works in 6 volumes]. V. 5 Kritika. Istorija. Publicistika. Moscow, «Hudozhestvennaja literatura» Publ., 1936.
14. Salkov N.A. Kurs nachertatel´noj geometrii Gaspara Monzha [Gaspard Monge’s Descriptive Geometry Course]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 3–4, pp. 52–56. DOI: 10.12737/2135. (in Russian).
15. Aksjonova M.D. Jenciklopedija dlja detej [Encyclopedia for children]. V. 11. Matematika. Moscow, Avanta+ Publ., 1998.