ON TOEPLITZ MATRICES CONSTRUCTION ALGORITHM WITH A GIVEN NUMBER OF CONNECTED COMPONENTS OF THE LIMITARY SPECTRUM COMPLEMENT
Abstract and keywords
Abstract (English):
The simplest topological properties of the approximate spectrum, namely the connectivity of its complement in the complex plane, are studied. A numerical verification of the lower bounds for the maximum number of the connected components of the limitary spectrum complement of the band Toeplitz matrices whose symbol is Laurent polynomial of the specified degree, is carried out. The algorithm for computation of the Toeplitz matrix symbol parameters with its approximate spectrum dividing the complex plane into a given number of connected components is adduced. The examples of polynomials which are Toeplitz matrices symbols with the limitary spectrum dividing the complex plane into a given set of connected components are numerically investigated. Graphs of the limitary spectra of Toeplitz matrices illustrating the results obtained are given. The obtained limitary spectra are compared to the Toeplitz matrices spectra of large size with a given symbol.

Keywords:
banded Toeplitz matrix, Toeplitz matrix symbol, limitary spectrum, number of connected components.
Text

В данной работе решается задача экспериментальной проверки оценок снизу максимального числа компонент связности дополнения предельного спектра ленточных тёплицевых матриц, символы которых — лорановские полиномы заданной степени. Вычисляются значения параметров символа последовательности ленточных тёплицевых матриц, дополнение предельного спектра которых имеет заданное число компонент связности из промежутка значений, границы которого найдены в работе [1]. Заметим, что это — часть общей задачи исследования геометрии предельного спектра ленточных тёплицевых матриц [2–6].  Отметим, что в случае тёплицевых матриц с более сложным символом предельный спектр часто допускает явное и относительно простое описание по сравнению с предельным спектром ленточных тёплицевых матриц [7–8]. 

References

1. Boettcher, A., Grudsky, S. Spectral properties of banded Toeplitz matrices. Philadelphia: SIAM, 2005, 422 р.

2. Schmidt, P., Spitzer, F. The Toeplitz matrices of an arbitrary Laurent polynomial. Mathematica Scandinavica, 1960, vol. 8, pp. 15–38.

3. Ullman, J.L. A problem of Schmidt and Spitzer. Bull. Amer. Math. Soc., 1967, vol. 73, no. 6, pp. 883–885.

4. Batalshikov, A., Grudsky, S., Stukopin, V. Asymptotics of eigenvalues of large symmetric banded Toeplitz matrices. Linear Algebra and its Applications, 2015, vol. 469, pp. 464–486.

5. Zolotykh, S.А., Stukopin, V.A. O vychislenii predel´nogo spektra lentochnykh teplitsevykh matrits. [On calculation of the limitary spectrum of band Toeplitz matrices.] Matematicheskiy forum (Itogi nauki. Yug Rossii).2013, vol. 7, pp. 80–87 (in Russian).

6. Zolotykh, S.А., Stukopin, V.A. Ob opisanii predel´nogo spektra lentochnykh teplitsevykh matrits. [On formulation of limitary spectrum of banded Toeplitz matrices.] Vestnik of DSTU, 2012, no. 8(69), pp. 5–11 (in Russian).

7. Batalshchikov, A.A., Stukopin, V.A. O raspredelenii sobstvennykh chisel teplitsevykh matrits s simvolom Khartviga Fishera. [On distribution of eigen values of Toeplitz matrices with Hartwig-Fisher symbol.] Vestnik of DSTU, 2011, no. 3, pp. 812–819 (in Russian).

8. Widom, H. Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index. Oper. Theory: Adv. Appl., 1990, vol. 48, pp. 387–421.

9. Zolotykh, S.А. Ob otsenkakh snizu dlya maksimal´nogo chisla komponent dopolneniya predel´nogo spectra posledovatel´nosti teplitsevykh matrits s simvolom zadannoy stepeni. [On lower bounds for the maximum number of complement components of the limit spectrum of a sequence of Toeplitz matrices with symbol of given degree.] Poryadkovyy analiz i smezhnye voprosy matematicheskogo modelirovaniya: sb. trudov mezhdunar. nauch. konf. [Ordinal analysis and related issues of mathematic simulation: Proc. Int. Sci. Conf.] Vladikavkaz, 2015, pp. 72–73 (in Russian).

Login or Create
* Forgot password?