51
27.35
01.04.04
221
5718
6457
MAT018000
In the formal model of the binary sufficient cause theory based on the theory of finite Boolean algebras a dependence of integer invariant from a number of joined acting factors is studied. A constructive description of such a minimal k for which attains a maximal value is given.
sufficient cause theory, Boolean algebra, Boolean functions, Boolean cube, outcome, causality in epidemiology, integer invariant
Введение. Одним из важных подходов в анализе причинности действия факторов в эпидемиологии, медицине, токсикологии является так называемая теория достаточных причин (sufficient cause models) [1-5]. В этом подходе интересующий нас исход, например, заболевание, представляется в виде логической композиции (как правило, в виде дизъюнкции конъюнкций) действующих бинарных (двухуровневых) факторов или их отрицаний, которые, будучи собраны вместе, с необходимостью приводят к появлению этого исхода. Однако даже в этом, наиболее простом, случае бинарных факторов такой анализ сводится к достаточно непростой трактовке содержательного смысла возможных логических конструкций.
В последнее время были предложены более формализованные модели такой теории (в бинарном варианте), которые позволяют проводить такой анализ как своего рода вычислительную процедуру [6-12]. Прежде всего это относится к задаче определения характера так называемого совместного действия факторов. Заметим, что для этой формализации даже в бинарном случае оказывается необходимым использовать далеко неэлементарные факты и конструкции теории булевых алгебр и булевых функций [13,14]. В частности, для формулировки основного результата (Теорема 1 ниже) нам потребуется ряд понятий и обозначений, часть из которых приведены в работах [10-12], к которым мы отсылаем читателя. Одно из этих понятий даёт строгое определение термину «взаимодействие факторов в отклике» на языке булевых функций [10, 12]. Следующее понятие обобщает его и позволяет говорить о взаимодействии меньшего числа факторов в отклике, зависящем от большего числа факторов.
Определение 1 [10, 12]. Будем говорить, что в отклике f, зависящем от n бинарных факторов, имеется взаимодействие k факторов, если существует k-элементное подмножество множества {1,2,…,n} и набор
такие, что в отклике
есть взаимодействие k факторов
. Если это взаимодействие достигается при
для некоторого
, то будем говорить, что имеет место взаимодействие k факторов для
при
Здесь
- функция от переменных
равная значению функции
при
Это понятие (1) обобщает понятие взаимодействия n факторов в отклике, зависящем от n факторов; (2) вводит естественную упорядоченность по «силе» взаимодействия в следующем смысле: если в данном отклике имеется взаимодействие k факторов, то также имеет место и взаимодействие любого меньшего числа этих факторов; (3) само это понятие корректно определено на классах эквивалентных откликов относительно действия группы симметрий n-мерного гиперкуба, которая является естественной группой симметрий в эпидемиологии [6-10].
Для численного описания взаимодействия k факторов в работах [10,12] было предложено понятие степени взаимодействия k факторов , для которого доказаны следующие свойства: (1)
инвариантна относительно группы симметрий гиперкуба; (2) выполняются неравенства
и
где
- степень взаимодействия n факторов в отклике, зависящем от n факторов; (3) в отклике f имеется взаимодействие k факторов тогда и только тогда, когда
При этом можно считать, что
для любого
для любого отклика f;
для любого отклика
и
Постановка задачи. Пусть отклик f, зависящий от n бинарных факторов фиксирован. Так как принимает значения от 0 до n, то среди них существует максимальное. Требуется найти, при каком минимальном k значение
максимально и описать его свойства.
Основной результат.
Теорема 1. Для любого отклика f существует единственное число такое, что выполняются неравенства
-
для любого
для любого
При этом подразумевается, что при неравенство (2) выполняется автоматически, так как в этом случае множество
пусто.
Таким образом, геометрически распределение значений можно представить следующим образом (см. Рис. 1)
Рис. 1. Пример распределения значений .
Из Теоремы 1 следует, что добавление любого фактора к любым факторам увеличивает степень взаимодействия факторов в данном отклике на единицу, а добавление любого фактора к любому числу
факторов не изменяет или уменьшает степень взаимодействия факторов в отклике.
Из Теоремы 1 следует, что набор значений представляет полную информацию о силе взаимодействия данного набора факторов в данном отклике.
Пример. Рассмотрим для n = 3 классы эквивалентных откликов, набор Mf, значение и графическое представление набора Mf .
Классы откликов |
Mf |
mf |
Графическое представление |
|
(1, 2, 3) |
3 |
|
|
(1, 2, 2) |
2 |
|
|
(1, 2, 1) |
2 |
|
|
(1, 2, 0) |
2 |
|
|
(1, 1, 1) |
1 |
|
|
(1, 1, 0) |
1 |
|
|
(1, 0, 0) |
1 |
|
|
(0, 0, 0) |
0 |
|
1. MacMahon B., Pugh T.F. Causes and entities of disease // Preventive Medicine. Boston: Little Brown, 1967. P. 11-18.
2. Rothman K. Causes // Am. J. Epidemiology. 1976. V. 104(6). P. 587-592.
3. Miettinen O. S. Causal and preventive interdependence: Elementary principles // Scand. J. Work. Environ. Health. 1982. V. 8. P. 159-168.
4. VanderWeele T.J., Robins J.M. The identification of synergism in the sufficient-component-cause framework // Epidemiology. 2007. V. 18(3). P. 329-339.
5. VanderWeele T. J., Richardson T. S. General theory for interactions in sufficient cause models with dichotomous exposures // Ann. Statistics. 2012. V. 40. P. 2128-2161.
6. Panov V. G., Nagrebeckaya Yu. V. Algebraicheskaya traktovka dvuhfaktornoy teorii dostatochnyh prichin // Trudy SPIIRAN. 2013. T. 3(26). S. 277-296.
7. Panov V. G., Nagrebeckaya Yu. V. Algebraicheskaya klassifikaciya sovmestnogo deystviya n binarnyh faktorov // Materialy IX mezhdunar. konf. «Sistemnyy analiz v medicine». Blagoveschensk. 2015. S. 31-34.
8. Panov V.G. and Nagrebetskaya J.V. Boolean algebras and classification of interactions in sufficient-component cause model // Int. J. Pure Appl. Math. 2015. V. 98(2). P. 239-259.
9. Panov V. G. and Nagrebetskaya J. V. Classification of combined action of binary factors and Coxeter groups // J. Discr. Math. Sci. & Cryptography. 2018. V. 21(3). P. 661-677.
10. Nagrebeckaya Yu.V., Panov V.G. Stepen' vzaimodeystviya binarnyh faktorov v teorii dostatochnyh prichin // Materialy XIII mezhdunar. konf. "Sistemnyy analiz v medicine". Blagoveschensk, 2019. C. 31-34.
11. Nagrebeckaya Yu.V., Panov V.G. Obobschenie ponyatiya vzaimodeystviya n faktorov v teorii dostatochnyh prichin i ego svoystva // Materialy XIII mezhdunar. konf. "Sistemnyy analiz v medicine». Blagoveschensk, 2019. C. 35-38.
12. Nagrebetskaya J.V., Panov V.G. Joint action of binary factors in the sufficient causes theory and its classification // Int. J Innov. Tech.&Exploring Eng. V.9(1), 2019. P.: 2146-2153.
13. Yablonskiy S. V. Vvedenie v diskretnuyu matematiku. M.: Nauka, 1986.
14. Lidl R., Pil'c G. Prikladnaya abstraktnaya algebra. Ekaterinburg, Izd-vo Ural'skogo un-ta, 1996.