Russian Federation
, Russian Federation
The article discusses the methods of face recognition based on convolutional neural net-works, the problems of face recognition in the presence of interference or face masking, the main stages of training neural networks and the process of actual recognition.
face recognition, face detection problems, masking problems, face recognition algorithms, convolutional neural networks
1. Duda, R. Raspoznavanie obrazov i analiz scen / R. Duda,P. Hart. – Sankt-Peterburg : Lan', 2016. – 164 c.
2. Zmeev, A.A. Sravnitel'nyy analiz arhitektur neyronnyh setey dlya ispol'zovaniya ih na praktike / A.A. Zmeev, V.V. Lavlinskiy, S.N. Yan'shin // Modelirovanie sistem i processov. – 2017. – T. 10, № 4. – S. 18-26.
3. Lavlinskiy, V.V. Primenenie matematicheskogo opisaniya deystviy dlya celenapravlennyh sistem na osnove metodov neyronnyh setey / V.V. Lavlin-skiy, S.N. Yan'shin // Modelirovanie sistem i processov. – 2017. – T. 10, № 2. – S. 17-23.
4. Modifikaciya metoda poiska informacii v seti internet na osnove ispol'zovaniya metodov induktivnogo rassuzhdeniya / V.V. Lavlinskiy, A.L. Sa-vchenko, I.A. Zemcov, O.G. Ivanova // Modelirovanie sistem i processov. – 2019. – T. 12, № 1. – S. 61-67.
5. Oksyuta, O.V. Sistema raspoznavaniya dorozhnyh znakov s ispol'zova-niem iskusstvennyh neyronnyh setey / O.V. Oksyuta, A.M. Milyutin // Mode-lirovanie sistem i processov. – 2017. – T. 10, № 1. – S. 64-67.
6. Taigman, Y. Deepface: Closing the gap to human-level performance in face verification[C] / Y. Taigman, M. Yang, M.A. Ranzato // Proceedings of the IEEE conference on computer vision and pattern recognition. – 2014. – Pp/ 1701-1708. –DOI: 10.1109/CVPR.2014.220