в работе изучается функция Грина разнопорядковой математической модели, которая описывает малые деформации системы, состоящей из стержня и струны, и помещенной во внешнюю среду с локализованными особенностями.
математическая модель, функция Грина, негладкие решения.
УДК: 517.926.4
О ФУНКЦИИ ВЛИЯНИЯ РАЗНОПОРЯДКОВОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
THE GREEN’S FUNCTION OF A DIFFERENT-ORDER MATHEMATICAL MODEL
Родионова О.М., магистрант
Шабров С.А.,доцент
ФГБОУ ВО «Воронежский государственный университет»
г. Воронеж, Россия
DOI: 10.12737/16942
Аннотация: в работе изучается функция Грина разнопорядковой математической модели, которая описывает малые деформации системы, состоящей из стержня и струны, и помещенной во внешнюю средуслокализованнымиособенностями.
Summary: the paper deals with the Green’s function of different-sequence of a mathematical model, which describes the small deformation of the system, consisting of a rod and string and placed into the external environment with localized features.
Ключевые слова: математическая модель, функция Грина, негладкие решения.
Keywords: mathematical model, Green’s function, nonsmooth solutions.
1. Покорный, Ю.В. Интеграл Стилтьеса и производные по мере в обыкновенных дифференциальных уравнениях / Ю. В. Покорный // ДАН. – 1999. - Т. 364, № 2. - С. 167-169.
2. Покорный, Ю.В. осцилляционная теория Штурма–лиувилля для им-пульсных задач / Ю.В. Покорный, М.Б. Зверева, С.А. Шабров // Успехи математических наук. - 2008. - Т. 63. № 1. - С. 111-154.
3. An Irregular Extension of the Oscillation Theory of the Sturm-Liouville Spectral Problem / Yu.V. Pokornyi, M.B. Zvereva, S.A. Shabrov, A.S. Ishchenko // Mathematical Notes. - 2007. - Т. 82, № 3-4. - С. 518-521.
4. Шабров, С.А. Об одной математической модели малых деформаций стержневой системы с внутренними особенностями / С.А. Шабров // Вестник Воронежского государственного университета. Серия: Физика. Математика. - 2013. - № 1. - С. 232-250.
5. Иванникова, Т.А. О необходимом условии минимума квадратичного функционала с интегралом Стилтьеса и нулевым коэффициентом при старшей производной на части интервала / Т.А. Иванникова, Е.В. Тимашова, С.А. Шабров // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. - 2013. - Т. 13. - № 2-1. - С. 3-8.
6. Голованёва, Ф.В. О функции Грина некоторых негладких задач / Ф.В. Голованёва // диссертация на соискание ученой степени кандидата физико-математических наук. Воронежский государственный университет. Воронеж, 2007. – 101 c.
7. Зверева, М.Б. О некоторых вопросах качественной теории дифферен-циальных уравнений с производными Стилтьеса / М.Б. Зверева // диссертация на соискание ученой степени кандидата физико-математических наук. Воронежский государственный университет. Воронеж, 2005. – 120 с.
8. Баев, А.Д. О единственности решения математической модели вынужденных колебаний струны с особенностями / А.Д. Баев, С.А. Шабров, Меач Мон // Вестник Воронежского государственного университета. Серия: Физика. Математика. - 2014. - № 1. - С. 50-55.
9. О единственности классического решения математической модели вынужденных колебаний стержневой системы с особенностями / А.Д. Баев, С.А. Шабров, Ф.В. Голованёва, Меач Мон // Вестник Воронежского государственного университета. Серия: Физика. Математика. - 2014. - № 2. - С. 74-80.
10. Дифференциал Стилтьеса в импульсных задачах с разрывными решениями / Ю.В. Покорный, М.Б. Зверева, С.А. Шабров, М.Б. Давыдова // Доклады Академии наук. - 2009. - Т. 428, № 5. - С. 595-597.
11. Зверева, М.Б. об адаптации метода конечных элементов для решения граничной задачи с дифференциалами Стилтьеса на геометрическом графе / М.Б. Зверева, С.А. Шабров, Е.В. Лылов // Вестник Воронежского государственного университета. Серия: Физика. Математика. - 2014. - № 1. - С. 97-105.