ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЭКСПЕРИМЕНТА ПО ИМПУЛЬСНОМУ ВОЗДЕЙСТВИЮ НА ПЬЕЗОЭЛЕКТРИЧЕ-СКИЙ ГЕНЕРАТОР СТЕКОВОГО ТИПА
Рубрики: МЕХАНИКА
Аннотация и ключевые слова
Аннотация (русский):
Описаны результаты численного моделирования натурного эксперимента низкочастотного импульсного воздействия на пьезоэлектрический генератор (ПЭГ) стекового типа для устройства накопления энергии. ПЭГ представляет собой многослойный осесимметричный пьезокерамический пакет. Разработана конечно-элементная модель устройства в ANSYS и проанализирована аналитическая упрощенная одномерная модель. Исследована зависимость выходного напряжения от величины активной нагрузки при гармоническом и нестацио-нарном механическом воздействии на ПЭГ. Сопоставление экспериментальных результатов и численного расчета показало их хорошую сходимость, что позволяет использовать раз-работанные численные модели для оптимизации конструкции ПЭГ при заданных частоте внешнего воздействия и величине активного сопротивления внешней электрической цепи. Кроме того, установлено, что частотная зависимость выходного напряжения ПЭГ осевого типа имеет сложный характер, зави-сящий как от уровня сжимающей импульсной нагрузки и ве-личины пьезомодуля материала чувствительного элемента ПЭГ, так и от электрического сопротивления нагрузки.

Ключевые слова:
многослойный пьезоэлектрический генератор, выходные характеристики, физический эксперимент, конечно-элементный расчет, упрощенная модель.
Текст

В последние годы получили развитие исследования, посвященные разработке пьезоэлектрических преобразователей механической энергии колебаний объектов в электрическую. Наиболее известны пьезоэлектрические преобразователи энергии двух конфигураций: осевого (стекового) и кантилеверного типа, которые имеют неограниченный срок эксплуатации, если внешние механические и температурные воздействия не приводят к необратимому уменьшению поляризации их активных элементов или их разрушению [1–3]. Большинство из этих работ посвящены изучению характеристик пьезоэлектрических генераторов (ПЭГ) кантилеверного типа («мода колебаний d31»). ПЭГ осевого типа исследованы в меньшей степени. В частности, известны работы, в которых приведены результаты теоретических исследований характеристик ПЭГ, работающих на «продольной моде d33 колебаний» [3, 4]. Работы [4–7] посвящены построению моделей ПЭГ на основе колебаний механической системы с сосредоточенными параметрами. Использование таких систем является удобным модельным подходом, так как позволяет получить аналитические зависимости между выходными параметрами ПЭГ (потенциалом, мощностью и т.п.) и электрическими, механическими характеристиками и сопротивлением внешней электрической цепи, однако, как показано в [8] диапазон их применения весьма ограничен. Более полные результаты исследований многослойных ПЭГ осевого типа приведены также в других работах [10, 11]. В них описаны результаты исследований характеристик ПЭГ, как осевого, так и кантилеверного типов. В [10] приведены интересные результаты температурных зависимостей параметров ПЭГ с чувствительным элементом (ЧЭ) из сегнетомягкой пьезокерамики ПКР–46. К сожалению, константы этого состава пьезокерамики не приведены, а это не позволяет провести сравнительный анализ достоверности измеренных параметров ПЭГ с известными, описанными, например, в [9]. В обзоре [11], опубликованном позднее, описаны области применения маломощных ПЭГ в основном кантилеверного типа с присоединенной массой. Также приведены только общие данные о разработанных за рубежом ПЭГ осевого типа, в которых используется механическая энергия при движении человека, т.е. в режиме циклических нагрузок. Более подробных данных о результатах исследований таких ПЭГ, к сожалению, не приведено. Выбор импульсного режима нагружения обусловлен областью применения ПЭГ осевого типа в качестве перспективных автономных источников энергии, преобразующих механическую энергию периодических воздействий из внешней среды, в том числе не гармонических, в электрическую. В частности, эти ПЭГ могут быть использованы для преобразования механической энергии колебаний рельсов железнодорожного транспорта или дорожного полотна автодороги в электрическую энергию.

 

Приведенный выше краткий анализ известных работ показал, что задача создания ПЭГ осевого типа большой мощности с эффективными выходными параметрами при действии импульсных нагрузок в полном объеме пока не решена, хотя и достаточно актуальна. Авторами получены экспериментальные и численные результаты исследований временных зависимостей выходных характеристик многослойного пьезоэлектрического генератора осевого типа от величины импульсных механических сжимающих напряжений при различных значениях электрического сопротивления нагрузки.

Список литературы

1. Erturk, A. Piezoelectric energy harvesting / A. Erturk, D. J. Inman. — N. Y. : John Willey and Sons, Ltd., 2011. — 402 p.

2. Anton, S. R. Multifunctional Piezoelectric Energy Harvesting Concepts. PhD diss. to Virginia Polytechnic Institute and State University / S. R. Anton. — Blacksburg : Virginia, 2011. — 215 p.

3. Головнин, В. А.Сравнительные характеристики пьезокерамических механоэлектрических преобразовате-лей для генерации электричества / В. А. Головнин [и др.] // Вестник Твер. гос. ун-та. Серия «Физика». — 2010. — № 11. — С. 33–46.

4. DuToit, N. E. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters / N. E. DuToit, B. L. Wardle, S. G. Kim // Integrated Ferroelectrics. — 2005. — V. 71. — №. 1. — Pp. 121–160.

5. DuToit, N. E. Experimental verification of models for microfabricated piezoelectric vibration energy harvesters / N. E. DuToit, B. L. Wardle // AIAA journal. — 2007. — V. 45. — №. 5. — Pp. 1126–1137.

6. Adhikari, S. Piezoelectric energy harvesting from broadband random vibrations / S. Adhikari, M. I. Friswell, D. J Inman // Smart Materials and Structures. — 2009. V. 18. — №. 11. — P. 115005.

7. Roundy, S. A piezoelectric vibration based generator for wireless electronics / S. Roundy, P. K. Wright // Smart Materials and Structures. — 2004. — V. 13. — №. 5. — P. 1131.

8. Зыонг, Ле В. Конечно-элементный анализ применимости прикладных теорий расчета пьезоэлектрического устройства накопления энергии стековой конфигурации / Ле В. Зыонг // Инженерный вестник Дона. — 2014. — № 2. — C. 1–13.

9. Анализ стабильности электрофизических характеристик пьезокерамик различных составов, используемых для пьезоэлектрических генераторов кантилеверного типа повышенной мощности / В. А. Акопьян [и др.] // Нано- и микросистемная техника. — 2012. — № 1. — C. 37–41.

10. Многослойные пьезоэлектрические актуаторы и особенности их применения / В. К. Казаков [и др.] // Ком-поненты и технологии. — 2007. — № 6. — С. 62–65.

11. Гриценко, А. Состояние и перспективы развития пьезоэлектрических генераторов / А. Гриценко, В. Ники-форов, Т. Щеголева // Компоненты и технологии. — 2012. — № 9. — С. 63–68.

12. Морозов, А. Г. Электротехника, электроника и импульсная техника / А. Г. Морозов. — Москва : Высшая школа, 1987. — 448 с.

13. Влияние вида механического нагружения на энергоэффективность пьезоэлектрических генераторов / В. А. Акопьян [и др.] // Нано- и микросистемная техника. — 2015. — № 2. — С. 33–44.

14. Zhao, S. Deterministic and band-limited stochastic energy harvesting from uniaxial excitation of a multilayer pie-zoelectric stack / S. Zhao, A. Erturk // Sensors and Actuators A : Physical. — 2014. — V. 214. — Pp. 58–65.

Войти или Создать
* Забыли пароль?