Россия
На модельном растворе додекана исследованы сорбенты с иммобилизованными клетками микроорганизмов рода Pseudomonas (К-5-25, К-2) и Rhodococcus (EriA. 2-4М). Рассмотрены сорбенты на основе нетканых материалов из полипропиленового волокна (нейтрального) и из акрилонитрильного волокна (содержащего в своей структуре группы первичного и вторичного аминов), а также на основе вермикулита, природного минерала из группы гидрослюд слоистого строения. Проведена оценка эффективности сорбционного и биокаталитического вкладов для изучения степени очистки воды. Такие саморегенерирующиеся системы, сочетающие физико-химическое и биологическое удаление нефтяных углеводородов из растворов с малыми и следовыми концентрациями, могут работать в динамическом режиме. При этом сорбент выполняет одну из важнейших функций биосистемы, обеспечивая доставку и накопление нефтяных компонентов из жидкой фазы, а иммобилизованные клетки осуществляют саморегенерацию биосорбента. Анализ сравнительной эффективности этих процессов с использованием кинетического анализа результатов, полученных на твердофазном сорбенте с иммобилизованными клетками и на исходном сорбенте без клеток, позволил определить степень физико-химического удаления додекана из водной эмульсии и степень его биодеградации, как в жидкой, так и в твердой фазе сорбционного материала. Наиболее эффективным оказался биосорбент на основе акрилонитрильного нетканого материала, позволивший уменьшить концентрацию додекана в системе до уровня ПДКрыб.хоз. в течение восьми дней.
сорбция, биодеструкция, иммобилизованные клетки микроорганизмов, биосистемы, кинетика.
1. Introduction
Application of highly effective sorption technologies for producing high-purity water usually involves pretreatment of water to remove petroleum hydrocarbons (PHCs) that causes loss of sorption activity due to blocking and “poisoning” of active ionic centers of polymeric ion exchangers. One of the most economically efficient means of the removal of spilled oil from either land or sea is the use of sorbents (Walkup et al., 1969). Synthetic sorbents such as polypropylene and polyurethane are the most commonly used commercial sorbents in oil-spill cleanup due to their oleophilic and hydrophobic characteristics (Schatzberg, 1971).
Bio-catalytic methods of water purification from oil hydrocarbons using immobilized oil-oxidizing microorganisms can significantly increase treatment efficiency (Li et al., 2005), compared to using the active solid phase support only.
In general, biological treatment of environmental pollutants is preferred over physicochemical as the former is cost effective, efficient and environmentally friendly (Ojo, 2006).
1. Belfanz J &Rehm HJ (1991) Biodegradation of 4-chlorophenol by adsorptive immobilized Alcaligenes sp. A 7–2 in soil. Appl. Microbiol. Biotechnol. 35: 662–668
2. Bettemann H &Rehm HJ (1984) Degradation of phenol bypolymer entrapped microorganisms. Appl. Microbiol. Biotechnol.20: 285–290
3. Boyd G. E., Adamson A. W., Meers L. S. The exchange adsorption of ions from aqueus solutions by organic zeolites. II Kinetics. — J. Amer. Chem. Soc., 1947, vol. 69, p. 2836–2848.
4. Cherkasova T.A., Koshchug VA, Leykin Y.A., 1999. Studying of enzymatic hydrolysis of the urea, immobilized urease. Applied biochemistry and microbiology, vol. 35 (2): 155–159, (in Russian).
5. Dixon, M., Webb, E., 1982. Enzymes: translation from D.Sc. chem. Sciences L. M. Ginadman and Ph.D. of chem. Sciences M. I. Levyant / under the editorship of Dr. chem. Sciences prof. V. K. Antonov and academician A.E. Brownshtein, vol. 2, 806 p, (in Russian).
6. Foght JM, Semple K, Gauthier C, Wetlake DWS, Blenkinsopp S, Wang Z, Fingas M (1999). Effect of nitrogen source on biodegradation of crude oil by a defined bacterial consortium incubated under cold, marine conditions. Environ. Technol. 20:839–849.
7. Gerdes B, Brinkmeyer R, Dieckmann G, and Helmke E. 2005. Influence of crude oil on changes of bacterial communities in Artic sea-ice. FEMS Microbiology Ecology, 53:129-139.
8. Ghazali F M, Abdul Rahman R N Z, Salleh A, Basri M. (2004).Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration& Biodegradation, 54: 61 — 67, (DOI:10.1016/j.ibiod.2004.02.002).
9. Kochar GS &Kahlon RS (1995) Degradation of 2,4-dichloro phenoxy acetic acid by immobilized cells of Pseudomonas putida. J. Gen. Appl. Microbiol. 41: 367–370
10. Komukai-Nakamura SK, Yamauchi TH, Inomata Y, Venkateswaran K, Yamamoto THS, Harayama S (1996). Construction of bacterial consortia that degrade Arabian light crude oil. J. Ferment. Bioeng. 82: 570–574.
11. Lee ST, Rhee SK & Lee GM (1994) Biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. Appl. Microbiol. Biotechnol. 41: 652–657
12. Leykin Y.A., Cherkasova T.A., Smagina N.A., 2008. The self-regenerated sorbents for purification of water from petroleum hydrocarbons. Sorption and chromatographic processes, vol. 8 (4): 585–599, (in Russian).
13. Leykin Y.A., Cherkasova T.A., Smagina N.A., 2009. Vermiculite sorbent for purification of water from petroleum hydrocarbons. Sorption and chromatographic processes, vol. 9 (1): 104–117 (in Russian).
14. Li Q., Kang C., Zhang C., (2005). Waste water produced from an oilfield and continuous treatment with an oildegrading bacterium, Process Biochem., 40: 873–877.
15. Malik ZA, Ahmed S (2012). Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium. Afr. J. Biotechnol. 11(3): 650–658.
16. Menke B &Rehm HJ (1992). Degradation of mixtures of monochlorophenols and phenols as substates for free and immobilized cells of Alcaligenes sp. A 7–2 in soil. Appl. Microbiol. Biotechnol., 37: 655–661
17. Miziev Magomed A., Kugotova M.M., Cherkasova T.A. (2016). Polymer indicators for the rapid control of the environment. Education and science for sustainable development. Scientific practical conference and school of young scientists: conference materials:. 3 h — M.: MUCTR. DI. Mendeleev. Ch.1. ISBN 978-5-7237-1384-0: 22–26, (in Russian).
18. O’Reilly KT & Crawford RL (1989) Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells. Appl. Environ. Microbiol., 55: 2115–2118
19. Ojo OA (2006). Petroleum Hydrocarbon Utilization by Native Bacterial Population from a Wastewater Canal Southwest Nigeria. Afr. J. biotechnol. 5(4):333-337.
20. Oteyza de TG, Grimalt JO, Lliros M, and Esteve I. (2006). Microcosm experiments of oil degradation by microbial mats. Science of the Total Environment. V. 357 (1–3): 12–24, (DOI: 10.1016/j.scitotenv.2005.04.039).
21. Sahasrabudhe SR, Modi AJ &Modi VV (1988). Dehalogenation of 3 chlorobenzoate by immobilized Pseudomonas B-13 cells. Biotechnol. Bioeng. 31: 889–893
22. Schatzberg P. U.S. Coast Guard Report No. 724110.1/2/1. Technical Report, U.S. Coast Guard Headquarters, Washington, DC, 1971.
23. Sun Y, Chen Z, Xu S, and Cai P. (2005). Stable carbon and hydrocarbon isotopic fractionation of individual n-alkanes accompanying biodegradation: evidence from a group of progressively biodegraded oils. Organic Geochemistry, 36: 225–238.
24. Trindade PVO, Sobral LG, Rizzo ACL, Leite SGF, and Soriano AU. (2005). Bioremediation of a weathered and recently oil-contaminated soils from Brazil: a comparison study. Chemosphere, 58: 515–522.
25. Walkup P. C.; Polentz L. M.; Smith J. D.; and Peterson P. L. (1969). Study of equipment and methods for removing oil from harbor waters. In Joint Conf. on Prevention and Control of Oils, pages 237–248.
26. Westmeier F &Rehm HJ (1985). Biodegradation of 4-chlorophenol by entrapped Alcaligenes sp. A 7–2. Appl. Microbiol. Biotechnol. 22: 301–305
27. Westmeier F &Rehm HJ (1987). Biodegradation of 4-chlorophenol in municipal waste water by absorptive immobilized Alcaligenes sp. A 7–2. Appl. Microbiol. Biotechnol. 26: 78–83.
28. Znamensky Y. P., 1993. Good approximating expression for the solution of a diffusion equation in a sphere. J. Phys. Chemistry, vol. 67 (9): 1924–1925, (In Russian).