В данной статье рассмотрен метод структурного синтеза класса параллельных механизмов, обеспечивающих плоскопараллельное перемещение подвижной платформы. Рассмотренный метод основан на применении теории винтов и концепции виртуальных цепей. Получены структуры всех параллельных механизмов, содержащие три соединительные кинематические цепи.
параллельный механизм, кинематическая цепь, теория винтов, виртуальная цепь.
1. Brogardh T. PKM research – important issues, as seen from a product development perspective at abb // Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, (Quebec, October 3–4 2002). P 68–82.
2. Merlet J.-P. An initiative for the kinematics study of parallel manipulators // Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, (Quebec, October 3–4 2002). P. 2–9.
3. Angeles J. The qualitative synthesis of parallel manipulators / Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, (Quebec, October 3–4 2002). P. 160-169.
4. Carricato M., Parenti-Castelli V. A family of 3-DOF translational parallel manipulators / Proceedings of the 2001 ASME Design Engineering Technical Conferences & Computers and Information in Engineering Conference, (Pittsburgh, PA, 2001). P. DETC2001/DAC–21035.
5. Frisoli A., Checcacci D., Salsedo F., Ber-gamasco M. Synthesis By screw algebra of translating in-parallel actuated mechanisms // Advances in Robot Kinematics, (Kluwer Academic Publishers, 2000). P. 433–440.
6. Herve J. M. The Lie group of rigid body displacements, a fundamental tool for mechanisms design // Mechanism and Machine Theory. 1999. 34(5). P. 719–730.
7. Huang Z., Li Q. C. General methodology for the type synthesis of lower-mobility symmet-rical parallel manipulators and several novel manipulators // The International Journal of Robotics Research. 2002. 21(2). P. 131–145.
8. Kong X., Gosselin C.M. Generation of parallel manipulators with three translational degrees of freedom using screw theory // Proceedings of the CCToMM Symposium on Mechanisms, Machines and Mechatronics, (Montreal, Canada, 2001). P. M3–01–012.
9. Kong X., Gosselin C.M. Type synthesis of 3-DOF spherical parallel manipulators based on screw theory // ASME Journal of Mechanical Design. 2004. 126(1). P. 101–108.
10. Zlatonov D., Gosselin C.M. A new parallel architecture with four degrees of freedom // Proceedings of the 2nd Workshop on Computational Kinematics, (Seoul, Korea, 2001). P. 57–66.
11. Hunt K. H. Constant-velocity shaft cou-plings: a general theory // ASME Journal of Engi-neering for Industry. 1973. 95(2). P. 455.
12. Hunt K. H. Structural kinematics of in-parallel-actuated robot-arms // ASME Journal of Mechanical Design. 1983. 105(4). P. 705–712.
13. Carricato M., Parenti-Castelli V. A family of 3-DOF translational parallel manipulators // Proceedings of the 2001 ASME Design Engineering Technical Conferences & Computers and Information in Engineering Conference, (Pittsburgh, PA, 2001). P. DETC2001/DAC–21035.
14. Herv´e J.M., Sparacino F. Structural synthesis of parallel robots generating spatial translation / In Proceedings of the fifth International Conference on Advanced Robotics, (Pisa, Italy, 1991). P. 808-813.
15. X. Kong, C.M. Gosselin Type synthesis of parallel mechanisms // Springer Tracts in Advanced Robotics. (Heidelberg 2007). Vol. 33. P. 272.
16. Рыбак Л.А., Мамаев Ю.А., Малышев Д.И., Вирабян Л.Г. Программный модуль для реализации заданной траектории движения выходного звена робота-гексапода для 3D печати изделий // Вестник БГТУ им. В.Г. Шухова. 2016. №8.С. 155–164.