сотрудник с 01.01.1975 по 01.01.2021
Иркутск, Иркутская область, Россия
Москва, г. Москва и Московская область, Россия
Иркутск, Россия
Иркутск, Россия
Факультет космических наук и инженерии, Национальный Центральный Университет, Тайвань
Москва, Россия
Иркутск, Россия
In Earth’s orbit on June 28, 1999, there was a diamagnetic structure (DS) representing a filament with a uniquely high speed (about 900 km/s). We show that the filament is a part of the specific sporadic solar wind (SW) stream, which is characterized as a small interplanetary transient. We report the results of studies on the interaction between such a fast filament (DS) and Earth’s magnetosphere. Around noon hours at daytime cusp latitudes, we recorded a powerful aurora in the UV band (shock aurora), which rapidly spread to the west and east. Ground-based observations of geo-magnetic field variations, auroral absorption, and auro-ras on the midnight meridian have shown the develop-ment of a powerful substorm-like disturbance (SLD) (AE~1000 nT), whose origin is associated with the im-pact of the SW diamagnetic structure on the magneto-sphere. The geostationary satellite GOES-8, which was in the midnight sector of the outer quasi-capture region during SLD, recorded variations of the Bz and Bx geo-magnetic components corresponding to the dipolization process.
streamer, filament, diamagnetic structure; dayside auroras, shock aurora, substorm-like magnetospheric disturbance
1. Akasofu S.I. Polar and Magnetosheric Substorms. Moscow, Mir, 1971, 320 p. (In Russian). English edition: Akasofu S.I. Polar and Magnetosheric Substorms. New York, Springer-Verlag, 1968, 280 p.
2. Borodkova N.L. Effect of large and sharp changes of solar wind dynamic pressure on the Earths’s magnetosphere: analysis of several events. Cosmic Reseach. 2010, vol. 48, no. 1, pp. 41–55. DOI: 10.1134/S001095251001003X.
3. Eselevich V.G., Eselevich M.V. Fractal structure of the heliospheric plasma layer on the Earth’s orbit. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2005, vol. 45, no. 3, p. 347. (In Russian).
4. Eselevich M.V., Eselevich V.G., Fujiki K. Streamer belt and chains as the main sources of quasi-stationary slow solar wind. Solar. Phys. 2007, vol. 240, p. 135.
5. Eselevich V.G., Fainshtein V.G., Rudenko G.V. Study of the structure of streamer belts and chains in the solar corona. Solar Phys. 1999, vol. 188, no. 2, p. 277.
6. Eselevich V.G., Fainshtein V.G., Rudenko G.V., Eselevich M.V., Kashapova L.K. Forecasting the velocity of quasi-stationary solar wind and the intensity of geomagnetic disturbances produced by it. Cosmic. Res. 2009, vol. 47, no. 2, pp. 95–113.
7. Huttunen K.E.J., Koskinen H.E.J., Pulkkinen T.I., Pulkkinen A., Palmroth M., Reeves E.G.D., Singer H.J. April 2000 magnetic storm: Solar wind driver and magnetospheric response. J. Geophys. Res. 2002, vol. 107, no. A12, 1440. DOI: 10.1029/2001JA009154.
8. Lin R.L., Zhang X.X., Liu S.Q., Wang Y.L., Gong J.C. A three‐dimensional asymmetric magnetopause model. J. Geophys. Res. 2010, vol. 115, A04207. DOI: 10.1029/2009JA014235.
9. Lui A.T.Y. Current controversies in magnetospheric physics. Rev. Geophys. 2001, vol. 39, pp. 535–564.
10. O’Brien T.P., McPherron R.L. Seasonal and diurnal variation of Dst dynamics. J. Geophys. Res. 2002, vol. 107, no. A11. DOI: 10.1029/2002JA009435.
11. Parkhomov V.A., Rakhmatulin R.A. Localization and latitudinal drift of the source Pi1B. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Reseach on Geomagnetism, Aeronomy, and Solar Physics]. Moscow, Nauka Publ., 1975, iss. 6, p. 132. (In Russian).
12. Parkhomov V.A., Borodkova N.L., Dmitriev A.V., Klimov P.M., Rakhmatulin R.A. The role of solar wind pressure jumps in the initiation and control processes of magnetospheric substorms. Geomagnetism and Aeronomy. 2011, vol. 51, no. 7, pp. 979–993. DOI: https://doi.org/10.1134/S0016793211070176.
13. Parkhomov V.A., Borodkova N.L., Eselevich V.G., Eselevich M.V. Abrupt changes of density in sporadic solar wind and their effect on Earth magnetosphere. Cosmic Reseach. 2015, vol. 53, no. 6, pp. 411–422. DOI: 10.1134/S0010952515050093.
14. Rouillard A.P., Sheeley N.R. Jr., Cooper T.J., Davies J.A., Lavraud B., Kilpua E.K.J., Skoug R.M., Steinberg J.T., Szabo A., Opitz A., Sauvaud J.-A. The solar original of small interplanetary transients. Astrophys. J. 2011, vol. 734, 10 p. DOI: 10.1088/0004-637X/734/1/7.
15. Schwenn R., Dal Lago A., Huttunen E., Gonzalez W.D. The association of coronal mass ejections with their effects near the Earth. Annales Geophysicae. 2005, vol. 23, pp. 1033–1059.
16. Sergeev V., Nishimura Y., Kubyshkina M., Angelopoulos V., Nakamura R., Singer H. Magnetospheric location of the equatorward prebreakup arc. J. Geophys. Res. 2012, vol. 117, A01212. DOI: 10.1029/2011JA017154.
17. Svalgaard L.J., Wilcox W., Duvall T.L. A model combining the solar magnetic field. Solar Phys. 1974, vol. 37, p. 157.
18. Tagirov V.R., Arinin V.A., Meng C.I., Sibeck D.G., Lui A.T.Y., Liou K., Ivanov A.G., Frank L.A., Morgan D., Parks G. Comparison of two substorm onsets on the basis of coordinated ground-satellite observations. Fourth International Conference on Substorms (ICS-4). 1998, pp. 339–342.
19. Torr M.R., Torr D.G., Zukic M., Johnson R.B., Ajello J., Banks P., Clark K., Cole K., Keffer C., Parks G., Tsurutani B., Spann J. A far ultraviolet imager for the International Solar-Terrestrial Physics Mission. Space Sci. Rev. 1995, vol. 71, iss. 1–4, pp. 329–383.
20. Wang Y.M., Sheeley N.R., Rich N.B. Coronal pseudostreamers. Astrophys. J. 2007, vol. 685, p. 1340.
21. Zhou X., Tsurutani B.T. Rapid intensification and propagation of the dayside aurora: large scale interplanetary pressure pulses (fast shocks). Geophys. Res. Lett. 1999, vol. 26, no. 8, pp. 1097–1100. DOI: 10.1029/1999GL900173.
22. Zhou X., Tsurutani B.T. Interplanetary shock triggering of nightside geomagnetic activity: substorms, pseudobreakups and quiescent events. J. Geophys. Res. 2001, vol. 106, no. A9, pp. 18,957–18,967. DOI: 10.1029/2000JA003028.
23. Zhou X.-Y., Strangeway R.J., Anderson P.C., Sibeck D.G., Tsurutani B.T., Haerende G., Frey H.U., Arballo J.K. Shock aurora: FAST and DMSP observations. J. Geophys. Res. 2003, vol. 108, no. A4, p. 8019. DOI: 10.1029/2002JA009701.
24. Zhou X.-Y., Fukui K., Carlson H.C., Moen J.I., Strangeway R.J. Shock aurora: ground-based imager observations. J. Geophys. Res. 2009, vol. 114, A12216. DOI: 10.1029/ 2009JA014186.
25. Zhou X.-Y., Zhou X.-Z., Angelopolus V., Shi Q., Wang C.-P., Frey H. Interplanetary shock-induced current sheet disturbances leading to auroral activations: THEMIS observations. J. Geophys. Res. 2013, vol. 118, p. 3173. DOI: 10.1002/jgra.50175.
26. URL: http://cdaweb.gsfc.nasa.gov/cgi-bin/eval2.cgi (accessed April 26, 2017).
27. URL: http://bdm.iszf.irk.ru (accessed April 26, 2017).
28. URL: http://cdaw.gsfc.nasa.gov/CME_list (accessed April 26, 2017).
29. URL: http://www.obsebre.es/en/rapid (accessed April 26, 2017).
30. URL: http://cdaweb.sci.gsfc.nasa.gov/cdaweb/istp_public (accessed April 26, 2017).
31. URL: http://aurora.phys.ucalgary.ca/cgi-bin/rio (accessed April 26, 2017).