сотрудник
Москва, г. Москва и Московская область, Россия
ГРНТИ 67.09 Строительные материалы и изделия
ББК 383 Строительные материалы и изделия
Способ выражения состава многокомпонентного материала через относительные – независимые и управляемые, характеристики и построение на их основе модели композиционного материала, рассмотренной в части 1 публикуемой статьи, позволил значительно сократить объём экспериментальных работ, при обеспечении глубокого и все-стороннего исследования песчаного бетона. Исследования показали, что особенно эффективно использование предлагаемых относительных характеристик при планировании экспериментов математическими методами. Целью проведённого эксперимента явилось создание математической модели песчаного бетона на основе комплексной оценки его физико-механических и технико-экономических характеристик, а также определение оптимальных, для заданных условий, составов бетона с минимальным расходом цемента. Учитывая технологические особенности приготовления бетонных смесей на мелких песках, при планировании эксперимента были приняты независимые относительные характеристики: х1 – отражающая долю цемента в молотой смеси цемента с песком; х2 – отражающая долю молотой цементно-песчаной смеси в суммарном содержании всех твёрдых компонентов системы и х3 – водотвердое отношение. Совместная вариация независимых переменных позволяет получить все вероятные сочетания входящих с состав песчаного бетона ингредиентов, что обусловливает возможность широкого и обоснованного анализа их влияния на свойства бетона. В результате обработки опытных данных, используя методы математической статистики, были получены алгебраические уравнения, отражающие связь между исследуемыми свойствами бетона и исходными параметрами. Совместное графическое решение этих уравнений позволило установить оптимальные составы песчаного бетона заданных марок, которые показали высокую сходимость результатов при их проверке. Полученные результаты, в целом, дают возможность считать, что предложенный способ выражения состава через относительные характеристики может представлять значительный интерес для научных работников, занимающихся вопросами оптимизации сложных многокомпонентных систем в различных областях исследований.
многокомпонентные системы, композиционные материалы, бетоны, относительная взаимо-связь компонентов, оптимизация, планирование эксперимента.
Введение. К важным достоинствам предложенного способа количественной оценки состава многокомпонентной системы на основе установленной относительной взаимосвязи компонентов можно отнести также безусловную возможность использования его при исследованиях с помощью математических методов планирования экспериментов, по заранее выбранным планам с различным числом параметров, при решении задач оптимизации и компьютерной обработки результатов [13, 14]. Описанный в первой части принцип относительной взаимосвязи компонентов в многокомпонентной системе был использован при оптимизации составов песчаного бетона.
Основная часть. Подбор состава песчаного бетона состоял в определении соотношения – цемент: песок молотый: песок немолотый: вода, а также расхода материалов на 1 м3 бетона, при условии, что заданные прочность бетона, морозостойкость и подвижность (жёсткость) бетонной смеси достигаются при наименьшем расходе цемента и минимальной усадке бетона. Целью проведённого эксперимента явилось создание математической модели песчаного бетона на основе комплексной оценки его физико-механических и технико-экономических характеристик, а также определение оптимальных для заданных условий составов бетона с минимальным расходом цемента.
Независимые переменные были определены после проведения предварительных опытов. Области их применения позволяют исследовать широкий диапазон составов песчаного бетона с расходом цемента 250–750 кг/м3 и воды 250–
340 л/м3. Учитывая технологические особенности приготовления бетонных смесей на мелких песках, а именно, включение в технологию совместный домол цемента с частью песка, расход этих компонентов выражали относительной величиной, характеризующей долю цемента в молотой смеси цемента с песком:
х1 =
где Ц – расход цемента, кг; ПМ – расход молотого песка, кг; М – содержание молотой смеси цемента и песка, кг.
Этот параметр позволяет управлять активной составляющей молотой смеси, характеризует содержание цемента в общей смеси молотых компонентов и имеет предел изменения от 0 до 1.
Вторым параметром в эксперименте был принят:
x2 =
где ПН – расход немолотого песка, кг; Т – суммарное содержание всех твёрдых компонентов, кг.
Этот параметр характеризует долю молотой цементно-песчаной смеси в суммарном содержании всех твёрдых компонентов системы, а также управляет гранулометрическим составом и плотностью системы в зависимости от соотношения - молотая цементно-песчаная смесь: немолотый песок. Область изменения этого параметра также от 0 до 1.
Третьим параметром, определяющим свойства песчаного бетона, был принят водо-твёрдое отношение:
x3 =
Это вызвано тем, что широко применяемый параметр – водоцементное отношение – является зависимым (расход цемента контролируется параметром x1) и его использование в планировании эксперимента исключается. Схема взаимодействия параметров при планировании была принята из оснований рекомендаций [4].
Совместная вариация независимых переменных позволяет получить все вероятные сочетания входящих с состав бетона ингредиентов, что обусловливает возможность широкого и обоснованного анализа их влияния на свойства песчаного бетона. Выбранные параметры отвечают основным требованиям планирования эксперимента: совместимы, независимы, однозначны, управляемы, содержат полную информацию о соотношении компонентов бетона.
Выбор области исследования каждого параметра и интервала варьирования определяется областью изменения переменной, представляющей практический интерес с точки зрения конкретной задачи. Области изменения переменных и их кодированные значения приведены в табл. 1.
Таблица 1
Условия кодирования переменных
№ П |
Условия кодирования |
Обозначения |
Натуральные значения переменных |
||
x1 |
x2 |
x3 |
|||
1 |
Основной уровень |
0 |
0,5 |
0,6 |
0,16 |
2 |
Интервал варьирования |
Δх |
0,1 |
0,15 |
0,02 |
3 |
Верхний уровень |
+1 |
0,6 |
0,65 |
0,18 |
4 |
Нижний уровень |
-1 |
0,4 |
0,35 |
0,14 |
Задача исследования заключалась в создании математической модели исследуемого бетона, т.е. в установлении зависимостей, связывающих выбранные параметры yi, прочность, усадка при высыхании, жёсткость, расход цемента и другие, с влияющими на них параметрами х1; х2; х3.
yi = f(x1 ; x2; x3 ... xn) (4)
Эта функция выражается в виде алгебраического полинома:
yi = B0 + В1х1 + В2х2 + В3х3 + В11х12 + В22х22 + В33х32 + В12·х1х2 + В23·х2х3 + В13·х1х3 (5)
где yi – значение функции отклика, предсказанное уравнением, исследуемое свойство;
B0, В1, В2, ... Вn – коэффициенты уравнения регрессии; х1, х2, х3, ... xn – независимые переменные в кодовом выражении; n – число факторов.
В соответствии с рекомендациями [4], если вид искомой зависимости неизвестен, был применён трёхуровневый план второго порядка.
Для выявления искомых опытных значений функций отклика (yi) запроектированных составов бетона был поставлен эксперимент, который включал перемешивание бетонной смеси в бегунах в течение 3–4 минут, уплотнение на лабораторной виброплощадке, твердение в нормальных условиях. Запроектированные в эксперименте составы песчаного бетона значительно отличаются по консистенции, поэтому уплотнение осуществляли до появления на поверхности образца цементного молока. Жёсткость определяли по методу И.М. Красного.
Испытание бетона на прочность при сжатии, определение деформаций усадки и набухания, а также кинетику водопоглощения осуществляли на образцах балочках размером 40×40×160 мм, по стандартным методикам.
В опытах использовали мелкий пылевидный (барханный) песок с Мкр. = 0,07, цемент М400, активность цемента 43,8 МПа. Помол цемента с песком осуществляли до удельной поверхности 3000...3500 см2/г. Результаты исследований приведены в табл. 2.
Таблица 2
Сводная таблица результатов планированния эксперимента
№ п/п
|
План эксперимента |
Состав бетона в долях от цемента (по массе) |
Расход материалов в кг/м3 |
Средняя плотность кг/м3 |
|||||
X1 |
X2 |
X3 |
Ц : ПМ : ПН : В |
Ц |
ПМ |
ПН |
В |
||
1 |
0,6 |
0,65 |
0,18 |
1:0,67:0,9:0,46 |
698 |
468 |
626 |
321 |
2115 |
2 |
0,4 |
0,65 |
0,18 |
1:1,5:1,35:0,69 |
458 |
689 |
620 |
317 |
2085 |
3 |
0,6 |
0,35 |
0,18 |
1:0,67:3,1:0,86 |
363 |
243 |
1125 |
312 |
2046 |
4 |
0,4 |
0,35 |
0,18 |
1:1,5:4,64:1:1,29 |
239 |
359 |
1109 |
308 |
2016 |
5 |
0,6 |
0,65 |
0,14 |
1:0,67:0,9:0,36 |
753 |
505 |
678 |
271 |
2205 |
6 |
0,4 |
0,65 |
0,14 |
1:1,5:1,35:0,54 |
490 |
735 |
662 |
265 |
2125 |
7 |
0,6 |
0,35 |
0,14 |
1:0,67:3,1:0,67 |
384 |
257 |
1190 |
257 |
2088 |
8 |
0,4 |
0,35 |
0,14 |
1:1,5:4,64:1,0 |
251 |
376 |
1165 |
251 |
2043 |
9 |
0,6 |
0,5 |
0,16 |
1:0,67:1,67:0,53 |
559 |
375 |
934 |
296 |
2165 |
10 |
0,4 |
0,5 |
0,16 |
1:1,5:2,5:0,8 |
357 |
536 |
893 |
286 |
2071 |
11 |
0,5 |
0,65 |
0,16 |
1:1:1,08:0,49 |
598 |
598 |
646 |
293 |
2135 |
12 |
0,5 |
0,35 |
0,16 |
1:1:3,71:0,91 |
314 |
314 |
1164 |
292 |
2077 |
13 |
0,5 |
0,5 |
0,18 |
1:1:2:0,72 |
436 |
436 |
872 |
314 |
2056 |
14 |
0,5 |
0,5 |
0,14 |
1:1:2:0,56 |
471 |
471 |
942 |
264 |
2148 |
15 |
0,5 |
0,5 |
0,16 |
1:1:2:0,64 |
458 |
458 |
916 |
293 |
2125 |
16 |
0,5 |
0,5 |
0,16 |
1:1:2:0,64 |
459 |
459 |
918 |
294 |
2131 |
17 |
0,5 |
0,5 |
0,18 |
1:1:2:0,64 |
458 |
458 |
916 |
293 |
2125 |
Таблицы 3
Контролируемые характеристики песчаного бетона в соответствии с планом эксперимента
№ п/п |
Коэффициент уплотнения, К упл. |
Воздухо вовле чение, ВЗ, % |
Жёсткость, сек. |
Деформативные характеристики |
Коэффициент |
Предел прочности |
|||
Усадка при высыхании, мм/м |
Набухание, мм/м |
100 |
300 |
Через 28 сут. |
Через 300 сут. |
||||
1 |
0,95 |
5 |
10 |
2,56 |
2,62 |
0,92 |
0,65 |
52,4 |
63,8 |
2 |
0,954 |
4,5 |
7 |
2,42 |
2,20 |
0,99 |
0,62 |
32,2 |
46,9 |
3 |
0,936 |
6,4 |
6 |
2,12 |
2,65 |
0,89 |
0,73 |
18,5 |
26,0 |
4 |
0,924 |
7,6 |
4 |
2,61 |
1,89 |
0,69 |
0,52 |
10,1 |
15,1 |
5 |
0,952 |
4,8 |
175 |
1,99 |
1,80 |
0,89 |
0,96 |
65,2 |
80,6 |
6 |
0,942 |
5,8 |
216 |
1,80 |
1,68 |
0,96 |
0,92 |
45,8 |
64,8 |
7 |
0,918 |
8,2 |
97 |
1,64 |
1,66 |
0,96 |
0,81 |
23,5 |
35,6 |
8 |
0,905 |
9,5 |
128 |
2,20 |
1,56 |
0,91 |
0,62 |
15,8 |
22,7 |
9 |
0,963 |
3,7 |
12 |
1,95 |
2,12 |
0,88 |
0,84 |
38,9 |
50,1 |
10 |
0,932 |
6,8 |
34 |
2,13 |
1,89 |
0,80 |
0,68 |
24,6 |
34,6 |
11 |
0,948 |
5,2 |
51 |
2,08 |
2,22 |
0,99 |
0,86 |
52,4 |
61,4 |
12 |
0,936 |
6,4 |
10 |
2,36 |
1,83 |
0,78 |
0,64 |
15,8 |
22,9 |
13 |
0,938 |
6,1 |
2 |
2,16 |
2,28 |
0,98 |
0,72 |
22,8 |
32,7 |
14 |
0,94 |
6,0 |
153 |
1,75 |
1,92 |
0,99 |
0,88 |
38,5 |
56,9 |
15 |
0,95 |
5,0 |
20 |
1,96 |
1,98 |
0,96 |
0,82 |
29,0 |
43,8 |
16 |
0,953 |
4,7 |
23 |
1,89 |
2,10 |
0,93 |
0,80 |
29,6 |
44,7 |
17 |
0,951 |
4,9 |
18 |
1,99 |
2,06 |
0,94 |
0,81 |
30,2 |
44,4 |
В результате обработки опытных данных, используя методы математической статистики, получены алгебраические уравнения, отражающие связь между исследуемыми свойствами бетона и исходными параметрами.
В натуральном масштабе:
R = 11,1 – 26,7
Ж = 3965 - 890
λ = 6,48 – 8,2
Ц = -161 + 267
Получив функциональные зависимости основных технологических и экономических параметров от заданных факторов, можно решать задачу оптимизации, предварительно конкретизировав её цель.
Цель оптимизации: определение составов песчаного бетона с марочной прочностью 10,0; 20,0; 30,0 МПа при жёсткости бетонной смеси не более 60 с, с минимальными деформациями усадки и минимальным расходом цемента.
Математически цель оптимизации выражается следующим образом:
R = f(
Ж = f(
λ = f(
Ц = f(
Существует два основных способа решения задачи оптимизации: графический (номограммы) и аналитический. Наглядную картину оптимизации даёт графический способ (рис. 2 а, б, в, г). Однако, он недостаточно точен, хотя и пользуется широким применением. Номограммы позволяют выявить наиболее общие закономерности изменения свойств песчаных бетонов на мелких песках изготовленных по предложенной технологии с использованием совместного домола цемента и части песка. Из графиков на приведенных рисунках видно, что свойства песчаных бетонов в значительной мере зависят от соотношения цемента и песка, от содержания молотого песка и воды.
С увеличением
Как видно из номограмм получить бетоны заданных марок можно при расходе цемента в широком диапазоне. При выборе состава бетона следует руководствоваться не только маркой и расходом цемента, но и учитывать его свойства в зависимости от условий изготовления и эксплуатации.
Например: бетон М200 можно получить при расходе цемента от 320 кг/м3 при
(рис. 2а) до 430 кг/м3 при
В результате проведённой обработки результатов исследований были установлены оптимальные составы песчаного бетона заданных марок (табл. 4).
Таблица 4
Оптимальные составы песчаного бетона, выраженные через факторы варьирования и в долях от цемента по массе
№ ПП |
Марка бетона |
Состав бетона, выраженный через фокторы варьирования |
Состав бетона, в долях от цемента по масс |
|||||
Ц/М |
М/Т |
В/Т |
Цемент |
Песок мол. |
Песок немол. |
Вода |
||
1 |
100 |
0,41 |
0,28 |
0,152 |
1,0 |
1,44 |
6,16 |
1,32 |
2 |
200 |
0,5 |
0,395 |
0,143 |
1,0 |
1,0 |
3,04 |
0,723 |
3 |
300 |
0,53 |
0,46 |
0,151 |
1,0 |
0,89 |
2,22 |
0,62 |
Рис. 2. Графическое отображение оптимизации свойств песчаного бетона на номограммах
а – номограмма свойств песчаного бетона при В/Т = 0,14;
б – номограмма свойств песчаного бетона при В/Т = 0,16;
в – номограмма свойств песчаного бетона при В/Т = 0,18;
г – оптимизация составов песчаного бетона графическим
способом в пространственных координатах Ц/М, М/Т, В/Т.
Условные обозначения к рис. 2.
Проверочные данные выбранных составов приведённые в табл. 5 показывают высокую сходимость результатов. Подобранные составы бетона отвечают требованиям задачи, поставленной в эксперименте.
Таблица 5
Физико-механические и физико-химические свойства песчаных бетонов оптимальных составов
№ пп |
Состав бетона песок немол.:вода |
Средняя плотность, кг/м3 |
Расход цемента, кг/м3 |
Жёсткость, сек |
Предел прочности, МПа 28сут. |
Усадка при высыхании, мм |
Щелочность водной вытяжки рН, через |
|
28 сут. |
180 сут. |
|||||||
1 |
1:1,44:6,16:1,32 |
2090 |
213 |
26 |
9,4 |
2,36 |
11,8 |
9,5 |
2 |
1:1:3,04:0,723 |
2125 |
368 |
55 |
22,5 |
1,95 |
11,36 |
10,1 |
3 |
1:0,89:2,22:0,62 |
2135 |
452 |
62 |
31,0 |
1,57 |
11,4 |
10,4 |
Примечание: оптимальный состав бетона М100 лежит за пределами эксперимента
Выводы. Предложенный способ выражения состава многокомпонентного материала через относительные – независимые и управляемые, характеристики и построение на их основе модели композиционного материала, позволяет значительно сократить объёмы экспериментальных работ, дает возможность глубокого и всестороннего исследования композиционного материала. Представленные результаты только в минимальной мере позволяют судить о возможностях разработанного метода исследования композиционного материала. Широкое применение этого метода с привлечением математического обеспечения и вычислительной техники, обеспечит многократное снижение экспериментальной работы при исследовании многокомпонентных систем, давая при этом более точную и более полную оценку их свойств, что несомненно должно облегчить труд экспериментатора и повысить его эффективность.
1. Борисюк Е.А. Разработка составов и технологии песчаного (мелкозернистого) бе-тона из барханных песков Туркменской ССР для жилищного строительства: дис…. канд. техн. наук. М…1988. 209 с.
2. Вознесенский В.А., Лященко Г.В. Осо-бенности планирования эксперимента и ре-шение интегральных задан в системах «смесь I смесь II – технология – свойства» // Завод-ская лаборатория. 1986. №12. С. 55–56.
3. Вознесенский В.А., Выровой В.Н., Корш В.Я. Современные методы оптимизации композиционных материалов. Киев: Буди-вельник, 1983. 143ь с.
4. Руководство по подбору состава тяжё-лого бетона. М.: Стройиздат, 1979. 103 с.
5. Борисюк Е.А., Ларгина О.И. Примене-ние новых независимых переменных для со-вершенствования методов оптимизации мно-гокомпонентных и структурированных си-стем /Сб. докладов участников круглого сто-ла «Наносистемы в строительстве и произ-водстве строительных материалов». М.: Изд. АСВ, 2007. С.38–43.
6. Чистов Ю.Д., Борисюк Е.А., Левшунов Р.Т. К вопросу выбора портландцемента для изготовления высоковольтных изоляторов // Вестник электроэнергетики. 1996. №1. С. 53–60.
7. Харитонов А.М. Развитие методов оп-тимизации составов многокомпонентных строительных композитов. // Фундаменталь-ные исследования. 2015. № 11-3. С. 520–523.
8. Ахназарова С.Л., Кафаров В.В. Мето-ды оптимизации эксперимента в химической технологии М.: Изд. В.Ш., 1985. 327 с.
9. Кошелева Е.А., Гурьев А.М. Оптими-зация химического состава насыщающих сме-сей при диффузионном борировании инстру-ментальных сталей // Международный журнал прикладных и фундаментальных исследова-ний. 2009. № 5. С. 76–77.
10. Кошелева Е.А., Нестеренко А.Г., Иванов С.Г., Гурьев А.М. Оптимизация химического состава насыщающих смесей при диффузионном упрочнении инструмен-тальных сталей / Труды VI Международной научной школы-конференции «Фундамен-тальное и прикладное материаловедение» // Алт. гос. техн. ун-т им. И. И. Ползунова. Бар-наул: Изд-во АлтГТУ, 2009. С. 179–183.
11. Гурьев М.А., Кошелева Е.А., Иванов С.Г. Оптимизация состава многоком-понентной насыщающей смеси на основе бо-ра и хрома для поверхностного легирования сталей // Ползуновский альманах. №1. Алт. гос. техн. ун-т им. И. И. Ползунова. Барнаул: Изд-во АлтГТУ, 2010. С. 131–135.
12. Нугманов А.Х-Х., Титова Л.М., Алексанян И.Ю., Фоменко Е.В. Оптимизация рецептур многокомпонентных продуктов ме-тодами теории подобия и ее практической реализации // Техника и технология пищевых производств. 2015. Т. 39. №4. С. 63–70.
13. Ахмадиев Ф.Г., Гильфанов Р.М. Математическое моделирование и опти-мизация «состав-свойство» многокомпонент-ных смесей // Известия казанского ГАСУ. 2012. №2. С. 289–297.
14. Яковис Л.М. Математическое моделирование и оптимизации управляемых процессов приготовления многокомпонент-ных смесей: дис…. докт. техн. наук. С.-П. 2002. 333 с.
15. Bonvalet M., Philippe T., Sauvage X., Blavette D. Modeling of precipitation kinetics in multicomponent systems: Application to mod-el superalloys // Acta Materialia. 2015. Vol. 100. Pp. 169–177.