Россия
Рассмотрена система очистки газовоздушных выбросов при производстве белково-витаминных добавок. Предложены способы снижения выбросов вредных веществ на стадиях ферментации, разделения и сушки. Регенерированные туманоуловители были включены в первые два метода систем очистки, а на этапе сушки была изменена сама схема сушки с полным устранением газовоздушных выбросов.
геоэкология, бытовые отходы, утилизация, кормовой белок, газовоздушные выбросы.
Крупнотоннажные заводы по получению кормовых дрожжей на различных источниках сырья имеют в основном одни и те же источники организованных газовоздушных выбросов – сушилки, ферментеры и сепараторы (рис. 1) [6].
Биомасса микроорганизмов при аэрогенном распространении проявляет аллергизирующее действие, вызывая бронхо-легочные патологии [1, 2].
Промышленное выращивание дрожжей производится в ферментерах объемом до 2000 м3, как правило, оснащенных системами мокрой очистки газов (СМОГ). Далее идет сепарация, при которой также выделяется значительное количество подобных по составу ГВВ, в связи с чем сепараторы и емкостное оборудование также оснащены системами СМОГ (рис. 2).
После выпарной установки суспензия поступает на сушку, где образуется готовый продукт влажностью 10%. На крупных заводах применяют распылительные сушильные установки (СУ) СРЦ-12,5-1100, СРЦ-12,5-1500 производительностью 15 и 25 м3/час по испаренной влаге [4] (рис. 3). Суспензия поступает на центробежно-распылительный механизм (ЦРМ), где в потоке сушильного агента (СА) распыливается на капли размером до 80 мкм, при этом процесс сушки происходит за 15–30 сек. СА с температурой до 500°С поступает в верхнюю часть сушильной камеры через диспергатор, который обеспечивает его равномерное распределение в объеме.
Основное количество (80–90%) высушенных дрожжей сепарируется в конусной части сушильной камеры, а остальная часть (мелкая фракция) с отработанным СА поступает в циклонную группу (технологическая ступень очистки). После очистки СА в санитарной ступени он выбрасывается в атмосферу.
При обследовании газовоздушных выбросов (ГВВ) одним из основных объектов изучения являлся ферментер. Средние показатели СМОГ от ферментеров следующие:
– расход ГВВ 50–70 тыс.м3/час; перепад давления на СМОГ 170–280 кг/м2; плотность орошения 0,4–0,6 л/м3.
Как показывают исследования, концентрация дрожжевых клеток в ГВВ от ферментера без очистки составляет 106 ...107 кл/м3, а после очистки 1,2×102 - 4×103, т.е. эффективность очистки в скрубберах Вентури составила 99,6 – 99,9% [5,7],(Патент РФ №2023719). Это практически обеспечивало ПДК в рабочей зоне 500 кл/м3.
Микроорганизмы во время культивирования выделяют продукты метаболизма в частности в виде карбоновых кислот, причем большая доля приходится на уксусную кислоту. Количество накапливаемых кислот зависит от стадии развития культуры и в стационарной фазе колеблется от 20 до 100 мг/л.
Средневзвешенная суммарная концентрации органических кислот в ГВВ составляет 7 – 14 мг/м3. Средняя концентрация оргкислот в ГВВ после очистки составляет около 5 мг/м3, что соответствует уровню ПДК для уксусной кислоты.
Наибольший вклад в ГВВ производств кормового белка вносят сушильные отделения. Средний расход сушильного агента составляет 190–250 тыс. м3/час с запыленностью 6000– 10 000 мг/м3.
Был изучен гранулометрический состав дрожжевой пыли на различных участках сушильной установки, выяснено, что он следующий: из–под конуса сушилки – 49 мкм, на входе в циклоны – 26 мкм, на выходе из циклонов – 6,8 мкм, готовый продукт 45 мкм [6].
Распылительные сушилки укомплектованы циклонами. Эффективность циклонов достаточно высока, и средняя концентрация белковой пыли на выходе не превышает 400 мг/м3, при умеренном гидравлическом сопротивлении – до 230–280 кг/м2. Причем фракции дрожжевой пыли до 5 мкм эффективно улавливаются в этой ступени очистки.
Второй ступенью очистки ГВВ являются скрубберы Вентури. Основные показатели работы этой ступени следующие: перепад давления – 250–320 кг/м2, скорость газа в горловине трубы Вентури – 80–120 м/с, удельное орошение 0,4–0,6 л/м3, запыленность до очистки – 250–400 мг/м3, запыленность после очистки – 10–25 мг/м3, эффективность очистки – 92–97%.
Оценивая вышесказанное, можно заключить, что концентрация органических кислот на выходе из СМОГ примерно находится на уровне ПДК. Концентрация же белковой пыли и клеток штамма - продуцента значительно превосходят ПДК, на пример по белку в 7–40 раз, и это обстоятельство вызывает необходимость контроля содержания этих ингредиентов в рабочей и селитебной зонах, а также поиск путей снижения их концентраций. Для достижения более высокой степени очистки ГВВ от ферментеров дополнительно к скрубберам Вентури были установлены сетчатые туманоуловители [3, 6] (рис. 4).
Туманоуловитель представляет собой емкостной аппарат с набором пакетов металлических сеток трикотажного (объемного) плетения из нержавеющей проволоки диаметром 0,2–0,3 мм. Пакеты укладывались с плотностью упаковки 200...250 м2/м3 при свободном сечении 97–98% Толщина пакета составляла 200...250 мм [2, 3, 8, 9]. Результаты промышленных испытаний туманоуловителей показали, что в процессе непрерывной эксплуатации в течение 6–10 суток их гидравлическое сопротивление увеличивалось в 7 раз с одновременным снижением эффективности очистки [10, 11, 12]. Конечное гидравлическое сопротивление туманоуловителей составляло 200...250 кг/м2, что резко снижало подачу вентилятора СМОГ на фоне снижения эффективности очистки ГВВ [2, 6]. Исследование состояния сетки туманоуловителя показало, что повышение гидравлического сопротивления вызвано ее засорением веществами, содержащимися в культуральной жидкости ферментера. Соответствующая температура, наличие биогенных элементов и микрофлоры создавали благоприятные условия для развития микроорганизмов, которые заиливали сетку, что и вызывало рост ее гидравлического сопротивления. В связи с этим нами была разработана оригинальная конструкция туманоуловителя, позволяющая регенерировать сетку без остановки ферментера [5, 6] (рис. 5).
Туманоуловитель состоит из четырех секций нержавеющей сетки, которые образуют квадрат, разделенный по диагонали перегородкой. В работе находится две секции при одновременной регенерации 2-х других. Очищаемый газ поступает в коллектор и далее на сетку туманоуловителя. При достижении определенного гидравлического сопротивления работающих секций происходит переключение потока ГВВ на очищенные секции с одновременным началом регенерации отработанных. Переключение производится заливкой секций раствором едкого натра (10–20%), столб которого является гидрозатвором. Туманоуловитель рассчитан на расход газа 65 тыс.м3/ч, имеет среднее гидравлическое сопротивление (40...60) кг/м2 при высокой эффективности улавливания.
Надежность разработанной конструкции туманоуловителя подтвердила его длительная эксплуатация в СМОГ промышленного ферментера. На рис. 6 показана динамика изменения концентрации клеток дрожжей в ГВВ во времени по мере внедрения туманоуловителей [6].
Наибольшее внимание на стадии сушки уделяется выбросам пыли готового продукта. По концентрации специфического белка в ГВВ, в основном, и оценивают экологическое совершенство производства.
Новые технические решения по экологическому совершенствованию сушильных отделений пошли не по пути наращивания мощностей систем газоочистки, а по пути изменений аппаратурно-технологической схемы сушки дрожжей.
Наиболее распространена схема сушильной установки, основанная на газоконтактном способе с выбросом отработанного СА в атмосферу [2, 5, 6] (рис. 3). Теплоноситель готовится из продуктов сгорания топлива с добавлением «присадки» – воздуха для доведения температуры теплоносителя до 400–450°С. Отработанный теплоноситель в количестве 200–250 тыс. м3 /ч с испаренной влагой после двухступенчатой очистки выбрасывается в атмосферу.
Была разработана и апробирована схема СУ с полностью замкнутым контуром СА. [5, 6, 13] (а.с. СССР № 1575382. (рис. 7),
СА в этой схеме циркулирует по замкнутому контуру и не имеет контакта с атмосферой. Пройдя группу циклонов и аппарат мокрой очистки, он поступает в конденсатор, в котором конденсируется влага, испаренная в сушильной камере. Далее осушенный и очищенный СА подается в воздухоподогреватель, где нагревается до требуемой температуры. Затем СА поступает в сушильную камеру, и таким образом его путь оказывается замкнутым.
Достоинством этого варианта схемы сушильной установки являются полная экологическая защищенность и взрывобезопасность (сушка паровоздушной смесью при содержании кислорода менее 16–17%). К достоинству этой схемы следует отнести и энергетическую целесообразность, так как процесс сушки осуществляется паровоздушной смесью, а также с повторным использованием 50–60% дымовых газов с температурой 180–200°С для разбавления продуктов сгорания до 600–700°С перед подачей дымовых газов в воздухоподогреватель [6], (а.с. СССР №1575382).
На графике (рис. 8) представлена динамика изменения концентраций специфического белка в ГВВ СУ с замкнутым контуром циркуляции СA. Видно, что в начале реконструкции в 100% проб обнаруживался специфический белок со средневзвешенной концентрацией 0,03 мг/м3. Период разработки и освоения сушилок сопровождался снижением средней концентрации белка до 0,0006 мг/м3 в 12% проб.
Наличие следовых количеств белка в дымовых газах, как показал анализ, обусловлено дефектами конструкций первых воздухоподогревателей. После устранения недостатков дальнейшая промышленная эксплуатация сушилок показала полное отсутствие специфического белка в дымовых газах.
1. Клюшенкова М.И., Луканин А.В. Защита окружающей среды от промышленных газовых выбросов. Учебное пособие. М., Моск. гос. университет инженерной экологии (МГУ-ИЭ), 2012 г. – 145 с.
2. Клюшенкова М.И., Луканин А.В. Защита окружающей среды от промышленных газовых выбросов. Учебное пособие. М.: ИНФРА-М, 2016. – 142 с.
3. Луканин А.В. Инженерная биотехнология: процессы и аппараты микробиологических производств: учебное пособие. М.: ИНФРА-М, 2016. – 451 с.
4. Лыков М.В., Леончик Б.И. Распылительные сушилки. М.: Машиностроение, 1966. – С. 331.
5. Луканин А.В., Ковальский Ю.В. Оценка модернизированного оборудования и систем газоочистки биотехнологического производства по предупреждению загрязнения атмосферного воздуха. ж.Биотехнология. – №3. – 92. – С. 75–79.
6. Луканин А.В. Экологическое совершенствование крупнотоннажных производств кормового белка. Докторская диссертация М. – 1994 г. – 269 с.
7. Луканин А.В., Соломаха Г.П. Гидродинамика течения и массоперенос в продуваемом за-крученном слое жидкости. АН СССР, ж. ТОХТ, том ХХ11, №4, М. – 1988. – С. 435–441.
8. Луканин А.В. Процессы и аппараты биотехнологической очистки сточных вод. Учебное пособие. М.: Университет машиностроения, 2014. – 224 с.
9. Луканин А.В. Процессы и аппараты биотехнологической очистки сточных вод. Учебное пособие. – М.: ИНФРА-М, 2016. – 242 с.
10. Kirsch A.A., Stechkina I.B. – In: Fundamental of Aerosol Science / Ed. By D. Shaw, New York, 1978. p. 156–256,
11. Аиба Ш., Хемфри А., Миллис Н. Биохимическая технология и аппаратура. Пер. с англ.. – М. Пищевая промышленность, 1975, – 287 с.
12. Borgwardt R.H., Harrington R.E., Spaite P.W., J. Air Poll. Contr. Assoc.,18, 387 (1968)].
13. Луканин А.В. Энерготехнологическое и экологическое совершенствование сушильных установок микробиологических производств. ж. Биотехнология. – Т. 5. – №6. – 1989. – С. 768–772.