ИНТЕНСИФИКАЦИЯ ПРОЦЕССОВ ГОМОГЕНИЗАЦИИ И ДИСПЕРГИРОВАНИЯ ПРИ ПОЛУЧЕНИИ СУХИХ, УВЛАЖНЕННЫХ И ЖИДКИХ КОМБИНИРОВАННЫХ ПРОДУКТОВ
Аннотация и ключевые слова
Аннотация (русский):
Обобщен опыт разработки нового поколения центробежных смесителей и технологий смешивания при получении сухих и увлажненных комбинированных продуктов. Представлено аналитическое исследование гидродинамики потоков, на основе чего получены зависимости коэффициента мощности роторно-пульсационного аппарата при ламинарном и турбулентном режимах и их обобщенная энергетическая характеристика.

Ключевые слова:
Гомогенизация, диспергирование, смешивание, интенсификация, аппарат, комбинированные смеси.
Текст
Текст произведения (PDF): Читать Скачать

 

Введение

В ряде отраслей народного хозяйства, в том числе в пищевой, комбикормовой, химической и других, от исхода операций переработки дисперсных сыпучих материалов зависит качество готового продукта. Од­нако в пределах каждой конкретной области различ­ные методы получе­ния и переработки дисперсных систем зачастую основаны на традиционных прие­мах и методах, которые совершенствуются в основ­ном эмпирическим путем. Аппараты, традиционно используемые, не устраивают промышлен­ность по целому ряду причин, в первую очередь по конечному качеству продукта, производительности, энергоем­кости и другим параметрам.

Технология производства комбинированных про­дуктов питания и полуфабрикатов зачастую преду­сматривает в своей основе процессы получения сме­сей с высоким соотношением смешиваемых компо­нен­тов, что является непростой инженерной задачей. Анализ существующих конструкций смесителей дисперсных материалов показал, что многие из них не удовлетворяют всем предъявляемым требованиям. Но при всех прочих равных условиях использование механических смесителей центробежного типа рас­сматривается наиболее предпочтительным. Данные аппараты, имеющие высокую производительность при малых габаритах и энергоемкости, позволяют получать смеси хорошего качества. Возможность усовершенствования имеющихся конструкций от­крывает широкие перспективы для конструирования с целью повышения интенсивности их работы.

Перспективными направлениями при переработке дисперсных материалов являются: интенсификация процесса смешивания за счет турбулизации и цирку­ляции потоков; аппаратурное оформление стадии смешивания по непрерывной схеме; разработка но­вого поколения центробежных смесителей, обеспе­чивающих смешивание в тонких, разреженных, пе­ресекающихся слоях с организацией направленного движения опережающих и рециркулирующих мате­риалопотоков; возможность совмещения в одном ап­парате процессов смешивания и диспергирования, что позволяет получать качественные смеси при больших соотношениях исходных компонентов. По­следнее является одним из основных преимуществ данного типа оборудования и представляет большой практический интерес для пищевой и ряда других отраслей промышленности.

Российскими и зарубежными учеными           (Ю.И. Макаров, Ф.Г. Ахмадиев, А.И. Зайцев,         В.В. Кафаров, В.Н. Иванец, В.Д. Харитонов,         Ю.Т. Селиванов, R.G. Gibilaro и др.) опубликован ряд исследований в области разработки теории и практики процессов смесеприготовления. Однако, несмотря на возрастающую роль процессов смешивания в пищевой и смежных технологиях, исследованиям смесительных агрегатов центро-бежного типа посвящено сравнительно небольшое количество работ.

Гомогенизаторы, используемые в настоящее время на большинстве пищевых предприятий, мо­рально и физически устарели, металло- и энергоемки и во многих случаях не способны обеспечить надле­жащее качество смеси, особенно высоковязких и плохотекучих компонентов. Поэтому для интенси­фикации процессов гомогенизации и диспергирова­ния необходимо использовать такие пути и подходы, которые позволяли бы увеличить турбулизацию и циркуляцию потоков при одновременном снижении энергопотребления и металлоемкости, в частности, звуковые, акустические (20–2·104 Гц), упругие коле­бания. Для генерирования звуковых колебаний целе­сообразно применять роторно-пульсационные аппа­раты (РПА). В них эффективное гидромеханическое диспергирование осуществляется путем периодиче­ского прерывания потока, происходящего из-за вра­щения ротора, размещенного коаксиально статору; в рабочих поверхностях ротора и статора выполнены каналы для протекания обрабатываемой среды.

Теоретические и экспериментальные исследова­ния РПА провели отечественные ученые В.И. Биг­лер, М.А. Балабыдкин, А.М. Балабышко, А.А. Барам, Л.Г. Базадзе, Г.Ю. Будко, П.П. Дерко, А.И. Зимин, В.П. Ружицкий, В.Н. Фридман, В.Ф. Юдаев и многие другие. Зарубежные ученые, внесшие наибольший вклад в теорию и практику гидромеханического дис­пергирования: П. Виллемс, А. Трейбер, П. Кифер,   Е. Руд, П. Шеррат, Д. Стауффер, К. Яманато, И. Накам и другие. Однако вопросы математического описа­ния гидродинамики вихревых потоков в рабочих зо­нах РПА при их ламинарном и турбулентном режи­мах течения и расчета его энергопотребления изу­чены недостаточно.

Целью работы является обобщение опыта разра­ботки нового поколения центробежных смесителей и технологий смешивания при получении сухих и ув­лажненных комбинированных продуктов, исследова­ние эффективности применения РПА в производстве жидких комбинированных смесей с целью интенси­фикации процессов гомогенизации и диспергирова­ния.

 

Объекты и методы исследований

Проведенный анализ комплексных методов интенсификации процесса смешивания выявил два возможных пути: конструктивное совершенство-вание известных аппаратов и разработка нового поколения центробежных смесителей.

Первый путь предложено реализовать за счет определения рациональных параметров работы аппаратов и усовершенствования их рабочих органов.

Влияние конструктивных и технологических пара­метров работы смесеприготовительных агрегатов цен­тробежного типа на процессы смешивания изучалось на комплексе стендовых лабораторных установок и в условиях действующих производств. В исследованиях в качестве ключевого компонента использовался ферромагнитный порошок ПЖ1ВМ1 ГОСТ 9894, а для контрольных экспериментов – химически чистая пова­ренная соль (дисперсность 5÷100 мкм).

С целью оценки влияния конструкции ротора на ка­чество приготавливаемых смесей исследовалось влия­ние внутреннего Х1, среднего Х2, внешнего Х3 конусов, а также их совместное воздействие. Результаты иссле­дований при соотношении компонентов смеси 1:100 и различной частоте вращения ротора n показаны на рис. 1. Корреляционный анализ данных показал, что наиболь­шее влияние оказывает сочетание всех трех конусов независимо от частоты вращения ротора. Это может быть объяснено тем, что время пребыва­ния частиц в аппарате в этом случае больше, также сказывается дополнительное перераспределение ма­териалопо­токов на поверхности конусов. Нами вы­явлено, что при увеличении количества конусов на роторе более трех значительного улучшения каче­ства смеси не происходит.

В центробежных СНД при движении частиц по поверхности вращающегося гладкого ротора обеспе­чивается эффективное радиальное смешивание по сечению. Увеличить степень продольного смешива­ния можно за счет организации движения части ма­териалопотоков вдоль оси аппарата в прямом (опе­режающем) или обратном направлениях. В модер­низированных конструкциях этот способ реализуется при опережающем перетоке частиц через отверстия и перепускные окна, выполненные на поверхности ко­нусного ротора. Рецикл материалопотока осуществ­ляется за счет установки внутри аппарата различного вида устройств (рис. 2), выполненных, например, в виде спирали Архимеда (патент РФ № 2132725), от­ражателей с торовой поверхностью (патент РФ № 2177362) или в виде колец (патенты РФ                № 2177823, 2207186, 2191063, 2207901).

 

 

Рис. 1. Влияние конструктивных параметров ротора на качество смешивания

 

 

 

Рис. 2. Центробежные смесители с рециркулирующим устройством

 

Для определения рациональных геометрических параметров трехконусного ротора исследовано влияние на качество смешивания сухих дисперсных материалов углов конусности (a1°, a2°) и размеров окон малого (F1, мм2) и среднего (F2, мм2) конусов. Опыты проводились по приготовлению смесей (соотношение 1 к 20 ферромагнитного трассера и сухого молока) с учетом рандомизации их во времени во избежание систематических ошибок. Регрессионная модель (коэффициент множественной корреляции R2 равен 91,3 %) имеет вид:

 

Vc = 9,51 – 0,192 · a2 0,303 · F1 +

+ 0,115 · F2 + 0,0014 · a1 · a2 + 0,0037 · a1 · F1.    (1)

 

После обработки результатов опытов выявлено, что отдельное воздействие каждого исследуемого параметра соответствует положительной корреляции с откликом, а угол конусности a1 не оказывает на него значимого влияния.

Исследовано влияние величины рециркулирую­щего потока на качество смеси в модели аппарата (па­тент РФ № 2132725), где в качестве варьируемых па­раметров приняты частота вращения ротора и поло­жение отражателя: верхнее (минимальный рецикл); среднее; нижнее (максималь­ный рецикл). Результаты приведены на рис. 3. Их анализ показывает, что каче­ство смеси улучшается при возрастании величины ре­циркулирующего потока и частоты вращения ротора вплоть до значения, равного 8 с-1.

 

 

Рис. 3. Зависимость качества смешивания от ве­личины рециркулирующего потока

 

Новые конструкции смесителей разработаны на основе концепции организации направленного движения материальных потоков в рабочем объеме аппарата. Для увеличения удельной поверхности контакта фаз и уменьшения энергозатрат движение материала осуществляется в тонкослойных и разреженных потоках. Эти идеи использованы при проектировании многокаскадных конусных роторов, размещенных в горизонтальной плоскости (патенты РФ № 2132725, 2177362, 2177823, 2207186, 2216394).

Центробежные смесители с конусным ротором при определенных геометрических и режимных па­раметрах обладают хорошей диспергирующей спо­собностью. Диспергирование частиц происходит во время их движения по поверхности конусов, в мо­мент прохождения через отверстия в роторе, при со­ударении между собой, корпусом аппарата и дру­гими препятствиями, а также за счет быстровра­щающихся разгрузочных лопастей с режущими кромками. В основе создания конструкций смесите­лей-диспергаторов (патенты РФ № 2159147, 2117525, 2191063, 2207901) лежит идея, что совмещение не­скольких способов силового воздействия на перера­батываемые материалы в одном аппарате связано с эффектом механической активации, что в итоге по­зволяет повысить качество смеси.

Улучшение качества смешивания и повышение диспергирующей способности достигаются в случае, когда конструкция ротора обеспечивает движение частиц во встречных пересекающихся потоках. Дан­ная идея реализована в конструкции непрерывнодей­ствующего центробежного смесителя-диспергатора с двумя конусными роторами, вращающимися в раз­ных направлениях (патент РФ № 2220765). Прове­дены экспериментальные исследования опытно-про­мыш­ленной модели СНД на материалах, входящих в рецептурный состав крупяных завтраков. Изучалось влияние на процесс диспергирования: относительной ширины окон на внутреннем конусе φ (отношение ширины перепускных окон L к дисперсности частиц d); степени рециркуляции материала с внешнего ко­нуса на внутренний K, %; разрушающего напряже­ния измельчаемого материала sР, МПа. Полный фак­торный эксперимент 33 проводился при постоянном значении окружной скорости внутреннего ротора, равной 30 м/с, так как при больших значениях на­блюдается уплотнение материала на поверхности конусов, ухудшается взаимопроникновение компо­нентов смеси и ее качество. Окружная скорость внешнего конуса принималась равной 8 м/с. Пропу­скная способность перепускных окон на внутреннем конусе составляла 50 %. В качестве критерия оценки использовали долю измельченного материала VD, %. Результаты представлены в виде регрессионной мо­дели:

 

                  (2)

 

Из анализа уравнения (2) следует, что наиболь­шее влияние на процесс диспергирования оказывают относительная ширина окон, а также совместное воздействие степени рециркуляции и разрушающего напряжения материала. Максимальные значения VD получены при относительной ширине перепускных окон φ от 3 до 5, степени рециркуляции K от 40 до 50 %.

В разработанных конструкциях СНД с верти­кальной компоновкой ротора реализуется способ по­следовательного разбавления при смешивании сыпу­чих материалов с большой разницей концентраций ис­ходных компонентов (рис. 4). Интенсификация про­цесса в этом случае достигается за счет разделения вход­ного потока на несколько частей с последую­щим их пересечением и добавле­нием исходного ком­понента в смесь, полученную на верхнем роторе, а также путем создания пересекающихся потоков над конусами с помощью отражателей.

Одним из способов сглаживания флуктуаций входных потоков в СНД является создание в нем буферной накопительной зоны (патент РФ № 2117525), в которой аккумулируется опреде-ленный запас смешиваемых компонентов.

Для получения увлажненных смесей хорошего качества из компонентов, которые в процессе хране­ния и смешивания могут образовывать конгломе­раты, предложено устанавливать диспергирующие крестообразные лопасти или ножи (патенты № 2117525, 2207901, 2191063).

На модели СНД (патент РФ № 2117525) изучены закономерности процесса смешивания сыпучих ма­териалов с малыми количествами жидких добавок. Исследовалось влияние на качество смеси частоты вращения ротора (X1), производительности смеси­теля (X2), соотношения сыпучей композиции и жид­кости (X3). Опыты проводились на компонентах, входящих в состав стекольной шихты, при введении жидкой добавки (воды) в количестве от 5 до 15 %.

 

 

Рис. 4. Смесители-диспергаторы с вертикальной компоновкой ротора

 

Качество смеси оценивалось равномерностью распределения жидкости по объему. Уравнение множественной регрессии (коэффициент корреляции R2 равен 89 %) в кодированном виде:

 

Vc = 7,45 – 1,77·X1 + 0,816·X2 + 1,943·X3.       (3)

 

По результатам опытов установлены рацио-нальные значения исследованных параметров и проведена оценка эффективности работы СНД с точки зрения энергетических затрат, максимальные значения которых при концентрации жидкой фазы не более 15 % не превысили 300 Вт (удельные энергозатраты 0,47 кВт·ч/м3).

С целью получения смесей дисперсных порош­кообразных материалов с жидкими высоковязкими добавками разработан СНД (патент РФ № 2159147). Процесс смешивания в нем происходит под дейст­вием центробежных и сил трения при движении компонентов по поверхности вращающегося диска-распылителя, а также в момент среза смеси со стенок корпуса. Благодаря форме ножей часть смеси воз­вращается на диск, образуя контур рециркуляции, что уменьшает влияние флуктуаций входных потоков на качество готового продукта.

Выявлено, что при вращении ротора внутри сме­сителя возникают силы, приводящие к образованию пылегазовых турбулентных потоков. Это явление вы­зывает нарушение предусмотренных в конструкции аппарата направлений движения материалопотоков и другие нежелательные эффекты, например, сегрега­цию. Поэтому нами предложено организовать направ­ленное движение воздушных потоков во внутреннем объеме аппарата за счет введения в его конструкцию дополнительных устройств. Это позволяет интенсифи­цировать процесс смешивания за счет дополнительной турбулизации и выдувания частиц дисперсного мате­риала из застойных зон, в которых он может накапли­ваться. Данные идеи реализованы в новых конструк­циях СНД. В смесителе (рис. 5) в верхней части кор­пуса установлен статичный отражатель в виде колец, между которыми размещены изогнутые направляю­щие. Закрученный пылегазовый поток под действием инерционных и центробежных сил прижимается к поверхности отражателя и затем направляется к цен­тру ротора, где осаждается на внутреннем конусе. Для дополнительной турбулизации на поверхностях среднего и внешнего конусов ротора выполнены тан­генциальные отверстия. Изучено их влияние на сте­пень циркуляции материала на роторе при измене­нии его частоты вращения. С помощью цифрового термоанемометра определены значения скорости воздушного потока для материалов различной сыпу­чести: для хорошосыпучих – 1,1÷1,5 м/с; плохосыпу­чих – 1,3÷1,8 м/с; связносыпучих – 1,5÷2,4 м/с.

В модернизированной конструкции ротора (па­тент РФ № 2246343) на внутренней поверхности среднего и внешнего конусов устанавливались спи­ралевидные направляющие лопасти, за счет которых в объеме аппарата создавалось направленное движе­ние пылевоздушного потока снизу вверх. Анализ по­лученных экспериментальным путем уравнений рег­рессии показал, что для получения смесей хорошего качества необходимо выдерживать расстояния ме­жду верхним основанием внешнего конуса и крыш­кой 40÷50 мм, угол установки направляющих лопа­стей должен составлять 85 % от угла траектории движения материалопотока по поверхности конусов, частоту вращения необходимо выдержать в диапа­зоне 11,5÷12,5 с-1. При соотношении дисперсных компонентов в диапазоне от 1:100 до 1:400 за счет рециркуляции пылевоздушных потоков на каждом конусе ротора качество смеси улучшается в среднем на 3¸3,5 %.

Изучено влияние на качество смешивания осе­вого нагнетателя, устанавливаемого на роторе (рис. 6) с целью создания движения пылевоздушных потоков сверху вниз. С этой целью на среднем ко­нусе ротора 1 закреплены четыре лопатки рабочего колеса осевого нагнетателя 3, при вращении которых образуется разрежение в области движения опере­жающих потоков с поверхности внутреннего конуса 2, что способствует лучшему взаимопроникновению частиц. В ходе опытов приготавливались смеси СОМ – ферромагнитный трассер (соотношение 1 к 100) при варьировании частоты вращения ротора n, коли­чества лопаток z и углов их поворота β. Получено регрессионное уравнение:

 

Vc = 13,054 – 4,058·z – 0,221·β + 0,084·n +

 + 0,117·z·β + 0,091·z·n + 0,009·n·β –

– 0,005·z·n·β.                             (4)

 

Анализ его показал, что наличие осевого нагнетателя оказывает наибольшее влияние на качество смешивания при частоте вращения ротора более 8,33 с-1. Однако при частоте более 9,5 с-1 происходит ухудшение качества смеси, вызванное переходом высокодисперсных компонентов в пылегазовый поток. Наилучшие результаты достигаются при частоте вращения ротора                   n = 8,33÷9,5 с-1, количестве лопастей z = 4 и углах их поворота β = 45 град.

 

Описание: график - 3

патент РФ № 2263533

 

Описание: график - 2

статичный отражатель

 

Описание: Безимени-3

 

ротор с тангенциальными отверстиями

 

 

Рис. 5. Смеситель с направленным движением воздушных потоков

 

Для реализации совмещенных процессов смеши­вания – диспергирования кромки окон на роторе и разгрузочных лопастей затачивались. Для создания направленного движения материала во внутреннем объеме аппарата на конусном роторе устанавлива­лись направляющие лопасти (патент № 2311951, рис. 7). В результате материалопоток, толщина слоя которого превышала высоту окон направляющих ло­пастей, разделялся на три части: первая проходила через окна и двигалась вместе с основным потоком по поверх­ности ротора; вторая, наталкиваясь на по­верхности лопастей, возвращалась к его центру, об­разуя контур рецикла; третья – через вырезы, выпол­ненные в верхней части лопастей, сбрасывалась на основной поток. При вращении разгрузочной лопа­сти, размещенной внизу смесителя, материал отогну­тыми концами забрасывался навстречу основному потоку на поверхность ротора.

 

 

Описание: Безимени-1

ротор с осевым нагнетателем

 

Рис. 6. Смеситель с осевым нагнетателем

 

 

Описание: Безимени-2

 

Рис. 7. Смеситель-диспергатор периодического действия

 

При исследовании работы центробежного смеси­теля-диспергатора периодического действия изучено влияние частоты вращения ротора (п, с-1), времени смешивания (τ, с) и коэффициента загрузки аппарата на качество смеси. Выявлено, что оптимальные ус­ловия проведения процесса смесеприготовления на­ходятся в области п = 10÷20 с-1; τ = 100÷200 с. При приготовлении композиции муки и поваренной соли (соотношение компонентов до 1 к 300) получена ка­чественная смесь (Vc = 3÷6 %). Влияние коэффици­ента загрузки аппарата на качество смешивания при частоте вращения п = 20 с-1 показано на рис. 8. В ходе исследования диспергирующей способности аппарата, оцениваемой степенью измельчения, уста­новлено, что наибольшее влияние оказывают режу­щие кромки разгрузочных лопастей и окон конуса.

 

 

Рис. 8. Зависимость качества смешивания от коэф­фициента загрузки аппарата

 

Сравнение удельных энергозатрат разработанных аппаратов и типовых конструкций показало, что пер­вые имеют удельную металлоемкость от 0,094 до 0,125 т·ч/м3, а удельные энергозатраты от 0,31 до    0,6 кВт·ч/м3, что примерно в 4÷8 раз меньше аналогич­ных характеристик серийного оборудования.

Основной технологической операцией при полу­чении регенерированного молока – многокомпо­нентного ЗЦМ является смешивание сыпучих дис­персных ингредиентов и последующее введение в смесь жидких добавок, в том числе жирофосфатид­ной композиции. При этом процесс смешивания ос­ложняется ввиду образования устойчивых конгломе­ратов, приводящих к неравномерному распределе­нию компонентов по объему смеси.

Описание: Pic.1.bmp
С целью усовершенствования технологии нами предложено использовать центробежный СНД (па­тент РФ № 2159147). При работе аппарата (рис. 9) непрерывно подаются через патрубки 2 жидкий и 3 – сыпучий компонен­ты в центр вращающегося от при­водного вала 5 диска-распылителя 6, где происходит процесс их смешивания. Полученная смесь-полу­фабрикат сбрасывается с диска на стенки корпуса 1, оседает на них и на поверхности отражателя 8 (зона I), попадая затем под ударное воздействие режущих кромок ножей 7. В момент ее среза конгломераты разрушаются и происходит интенсивное смешивание сыпучего материала, жидкости и вязкой полидис­персной системы в зоне II.

 

Описание: 9а.bmp

 

Рис. 9. Схема центробежного смесителя порошко-образных материалов с жидкими добавками

Работоспособность аппарата проверена при при­готов­лении композиции на основе СОМ с добавле­нием жидкой смеси жиров и эмульгирующих пре­миксов. Основной компонент (СОМ) подавался в ап­парат объемным дозатором производительностью от 4,5 до 10 г/с, а жировая композиция, предварительно подогретая до температуры 40 °С, поступала через дозатор жидкости. Содержание жира в смеси варьи­ровалось от 4 до 20 % и определялось в пробах гото­вого продукта по косвенному методу В.С. Рушков­ского. В ходе экспериментов исследовалось влияние частоты вращения ротора X1, с-1 и концентрации жи­ровой фазы X2, % на равномерность ее распределе­ния по объему композиции Vc (Y, %). Получено уравнение множественной регрессии (R2 равно 0,92):

 

Y = 31 – 4,8·X1 – 0,8·X2 + 0,25·X12 +

+ 0,05·XX2 + 0,02·X22.                    (5)

 

Анализ уравнения (5) показывает, что с увеличе­нием частоты вращения ротора качество получаемой композиции улучшается до некоторого критического значения, а затем ухудшается из-за уменьшения вре­мени пребывания материала в активной зоне. Выяв­лено, что частота вращения ротора должна лежать в пределах от 6,5 до 10 с-1. Увеличение концентрации жировой фазы приводит к ухудшению качества смеси, так как происходит возрастание числа конгломератов. В разработанной конструкции центробежного СНД время смешивания исчисляется в се­кундах, а коэффициент вариации не превышает 10–15 %.

Нами проведены теоретические исследования гидродинамики потоков в РПА. В целях упрощения анализ осредненного течения среды в кольцевом за­зоре РПА (рис. 10) выполнен с позиции осесиммет­ричного вихревого потока эффективно-вязкой жид­кости (течение типа Куэтта), осложненного равно­мерным радиальным вдувом.

 

 

 

 

Рис. 10. Расчетная схема и поток в роторе РПА

 

Ввиду малой величины зазора ротор и статор представлены бесконечными проницаемыми соос­ными цилиндрами (краевые эффекты не учитыва­лись). Исходная система уравнений движения жид­кости в зазоре в цилиндрической системе координат r, z и j представлена в виде:

 

 

     (6)

 

где Vr, Vj – радиальная и окружная компоненты ско­рости; P – давление; r – текущий радиус.

Уравнение неразрывности в интегральной форме:

 

                            (7)

 

где L – объемный расход жидкости, проходящей через зазор. Граничные условия для окружной компоненты заданы соотношениями: при r = R1, Vj = b w R1; при r = R2, Vj = a w R2.

Соответствующий выбор коэффициентов сколь-жения a и b позволяет провести анализ структуры межцилиндрового потока для различных вариантов расположения роторного и статорного цилиндров. В работе проанализированы два варианта: А – внутренний роторный и внешний статорный цилиндры; В – внутренний статорный и внешний роторный.

Условие (7) позволяет свести анализ течения жидкости в зазоре к плоской задаче, а исходную систему (6) к виду:

 

                           (8)

 

                     (9)

 

где Г = Vj r – циркуляция окружной компоненты скорости; Rer = Vr r/nэф – число Рейнольдса радиального потока.

Первое уравнение описывает изменения давления по радиусу зазора, второе – радиальный профиль окружной компоненты, определяя тем самым сдвиговые напряжения и диссипативные потери в нем. Последнее является определяющим, так как дает возможность анализа структуры ламинарного и турбулентного вихревых течений в зазоре.

Ламинарный режим (nэф = n). В этом случае число Рейнольдса сохраняет постоянное значение, равное Rer = L/(2pHn), а уравнение (9) имеет точное аналитическое решение:

 

          (10)

 

где R = (R2/R1)2 – относительная величина межцилиндрового зазора; kl = Rer/2+1 – параметр распределения.

Его анализ показывает, что при отсутствии радиального течения (kl = 1) профиль окружной скорости в зазоре точно соответствует распределению Куэтта (рис. 11). По мере увеличения интенсивности радиального потока происходит деформация профиля: при вращении внутреннего цилиндра область максимальных окружных скоростей в зазоре расширяется, повышая градиент сдвига вблизи статорного цилиндра; при вращении внешнего цилиндра, наоборот, радиальное течение стремится как бы «прижать» вихревой поток к поверхности ротора.

 

 

Рис. 11. Профили окружной скорости в зазоре R = 1,01 при ламинарном режиме: 1 – kl = 14; 2 – kl = 10; 3 – kl = 100

 

Турбулентный режим (nэф = nt). Сохранение ламинарной структуры вихревого потока в условиях поперечных пульсаций затруднительно и возможно только при высокой вязкости обрабатываемой среды и малых радиальных зазорах. Гораздо чаще в межцилиндровых зазорах возникает турбулентный вихревой режим, осложненный эффектами акустики, гидроудара и кавитации. Для оценки профиля осредненной окружной скорости в зазоре использовано уравнение (9), в котором кинематическая вязкость среды n заменена турбулентной nt. В гипотезе Прандтля о «длине пути смешения»

 

                           (11)

 

принято допущение, что масштаб турбулентных пульсаций сопоставим с величиной межцилиндрового зазора и сохраняет постоянное значение, т.е.

 

 

где c – эмпирическая характеристика, зависящая от геометрии перфораций роторного и статорного цилиндров.

Проведя двойное интегрирование с учетом граничных условий, получим искомое решение:

 

  (12)

в котором параметр kt представлен отношением чисел Рейнольдса: kt = Rer / Re1. Заметим, что число Рейнольдса Rel = wl2/n показывает соотношение инерционных сил турбулентных пульсаций и сил вязкостного трения, являясь мерой интенсивности турбулентности в зазоре. Анализ выражения (12) показывает, что выбор значения параметра kt в интервале [0…∞] позволяет моделировать структуру межцилиндрового потока, отражая специфику конструкции и режим работы РПА.

Расчеты, сделанные нами, показывают, что в узких зазорах турбулентный вихревой поток сохраняет свою структуру даже при интенсивном радиальном течении. По мере расширения зазора влияние поперечного потока усиливается. Независимо от граничных условий турбулентный поток всегда сохраняет тенденцию к торможению: с увеличением параметра kt его окружная скорость в зазоре уменьшается, приводя к росту напряжений сдвига вблизи поверхности роторного цилиндра.

Расчет энергозатрат в РПА выполнен методом диссипативных потерь.

Известно, что при движении вязкой несжимаемой жидкости в конечном объеме V количество механической энергии потока Nd, переходящей в тепло в единицу времени, равно:

 

                         (13)

где S – диссипативная функция потока в данной области; mэф – эффективная вязкость среды. Учитывая, что вихревой поток в зазоре является плоским и симметричным относительно оси вращения, выражение для диссипативной функции:

 

                 (14)

 

Второе слагаемое, учитывающее потери энергии при расширении потока, в силу малости может быть опущено. После подстановки выражения (14) в интеграл (13) и представления его в безразмерном виде получим:

 

  (15)

 

Левая часть интеграла (15) – искомый коэффициент мощности ступени РПА. В общем случае для его нахождения требуется знание распределений окружной скорости и эффективной вязкости в радиальном направлении.

Нами рассмотрено решение интеграла (15) применительно к модификации ступени «внутренний ротор – наружный статор» для ламинарного и турбулентного режимов работы. Определив скорость сдвига в зазоре, используя выражения (10), (12) и выполнив интегрирование уравнения диссипации (15), запишем коэффициент мощности ступени РПА для ламинарного и турбулентного режимов:

                   (16)

 

                     (17)

 

Первые множители учитывают влияние расхода на энергозатраты ротора:

 

    (18)

 

      (19)

 

где m = 8/(R 1) + kt/R.

Анализ выражений (18) и (19) показывает, что при малых расходах коэффициент мощности при ламинарном режиме равен обратной величине окружного числа Рейнольдса, а в режиме развитой турбулентности сохраняет свое постоянное значение, определяемое масштабом поперечных сечений:

 

при < 10     = ;

при > 1000    =                 (20)

 

Выражения (20) позволяют упростить определение эмпирической постоянной  и установление ее связи с конфигурацией прорезей роторного и статорного цилиндров. Опираясь на принцип предельного перехода, обобщенную зависимость критерия мощности от числа Рейнольдса Rew можно представить в виде:

 

  (21)

 

Действительно, в области малых чисел Рейнольдса определяющим становится первое слагаемое, в то время как при больших – второе.

Типичный вид теоретической кривой мощности с учетом влияния радиального зазора и расхода приведен на рис. 12. Ее характерной особенностью является наличие скачка мощности в переходной области, амплитуда и положение которого зависят от величины межцилиндрового зазора.

 

 

Рис. 12. Зависимость критерия мощности от критерия Рейнольдса при различных зазорах, диаметр ротора 221 мм, модификация «А»

Для описания вихревого течения в полости ротора использована исходная система уравнений Навье – Стокса (6) и неразрывности потока в дифференциальной форме. Решение строилось с использованием аппроксимирующего выражения для осевой компоненты скорости вихря:

 

                       (22)

 

Согласно выражению (22) цилиндрическая поверхность xR(x < 1) делит вихревой поток в роторе на две зоны: центральную с нисходящим и периферийную с восходящим осевыми течениями.

Нами анализировались режимы вдува, при которых окружная скорость вращения ротора значительно больше средней скорости радиального потока. В этом случае толщины пограничных слоев, формирующиеся на торцевых поверхностях, пренебрежимо малы по сравнению с размерами центральной вихревой зоны, являющейся объектом нашего анализа. Распределение циркуляции окружной компоненты   Г = Vjr в этой зоне найдено в результате приближенного решения второго уравнения исходной системы (6):

                (23)

 

Полученное решение (23) позволяет оценить степень влияния радиального потока на профиль и перепад давления в роторе. Безразмерный профиль давления (критерий Эйлера) в роторе оценивался интегралом вида:

 

   (24)

 

Во всех случаях отмечена тенденция снижения числа Эйлера по мере увеличения интенсивности вдува среды в ротор.

При движении жидкости во внутренней полости ротора потоку сообщается кинетическая энергия, которая затем частично расходуется на преодоление гидравлического сопротивления системы перфорированных цилиндров ротора и статора, а частично преобразуется в потенциальную энергию давления во внешней камере.

Учитывая условие сохранения энергии и проведя необходимые преобразования, запишем основное уравнение Бернулли для РПА в безразмерном виде:

 

           (25)

 

где Eu = 2(P2 P1)/(r(wR)2) – коэффициент давления (число Эйлера); W = L/(wR Fs) – коэффициент расхода; xрс – коэффициент гидравлического сопротивления. Последнее слагаемое характеризует влияние положения входного и выходного патрубков и в случае малой величины может быть опущено. Выражение (25) представляет собой напорно-расходную характеристику РПА в безразмерном виде. Единственным параметром, требующим экспериментального определения, является коэффициент xрс.

Нами исследовано влияние двух основных факторов: конструктивных параметров ротора и статора и интенсивности циркуляционного потока. Результаты теоретических и экспериментальных исследований показали, что влияние расхода на потребление РПА незначительно. Так, во всем диапазоне изменения расхода увеличение мощности при турбулентном режиме не превышало 5–6 %, и только при обработке высоковязких сред, когда вихревой поток в межцилиндровом зазоре оставался ламинарным, оно составило 10–15 %.

Границы переходного режима для всех исследованных зазоров в диапазоне 0,4…2,0 определялись по осредненным координатам первых двух экстремальных точек энергетической характеристики, построенной в координатах KN Таw: первое критическое число оказалось равным 25, второе – 50. Более раннее развитие турбуленетности в межцилиндровом зазоре РПА (по сравнению с гладкими цилиндрами, где Таw = 41,3) связано с возмущающим воздействием радиального течения и перфорации, которые способствуют образованию локальных вихрей и пульсаций. Найденные значения критических чисел Рейнольдса и параметра эквивалентной шероховатости, введенного нами для оценки степени влияния перфорации ротора и статора на энергопотребление РПА, приведены в табл. 1.

 

 

Таблица 1

 

Постоянные энергетической характеристики РПА типа «А»

 

Межцилиндровый зазор, мм

0,4

0,6

0,8

1,2

1,6

2,0

Первое критическое число

Рейнольдса

414,2

337,4

292,6

238,7

206,6

184,6

Второе критическое число

Рейнольдса

828,4

674,8

585,2

477,4

413,2

369,1

Параметр экв. шероховатости

c2 103

2,414

2,964

3,418

4,189

4,84

5,417

 

 

На рис. 12 показаны опытные кривые мощности смесителя с диспергирующей головкой модифика­ции «А» при различных значениях межцилиндрового зазора и режимов ее работы. При сравнении опыт­ных и расчетных характеристик погрешность не пре­вышает 15 %. Некоторое смещение вверх экспери­ментальных точек объясняется дополнительными за­тратами энергии на трение торцевых поверхностей ротора. Аналогичные результаты получены и для диспергирующего устройства типа «В».

Как показали результаты исследований, в отличие от энергопотребления величина напора, создаваемая РПА, в существенной степени зависит от интенсив­ности циркуляционного потока. И при ламинарном, и при турбулентном режимах отмечено снижение напора по мере увеличения интенсивности циркуля­ции, причем в последнем случае оно более сущест­венно. Результаты обработки экспериментальных данных по напору при нулевом расходе показали, что в турбулентной области коэффициент гидравли­ческого сопротивления роторного и статорного ци­линдров сохраняет постоянное значение, равное    = 0,1±0,01. Найденные значения в первом приближе­нии оказались одинаковыми для обеих исследован­ных конструкций диспергирующих головок. Уста­новлено также, что коэффициент  практически не зависит от параметра истечения Кt, а в основном оп­ределяется долей «живого сечения» ротора и статора (коэффициентом перфорации Кf).

При условии пропорциональной зависимости турбулентного числа Рейнольдса kt и параметра за­крутки вихревого потока ротора W и учитывая то, что гидравлические потери в основном связаны с об­теканием прорезей, уравнение напорно-расходной характеристики (НРХ) РПА в критериальной форме будет иметь вид:

 

                  (26)

 

где a и b – эмпирические постоянные, найденные из условия наилучшего согласования опытных и теоре­тических значений.

Найденные значения эмпирических коэффици­ентов а и b в диапазоне исследованных зазоров при­ведены в табл. 2. В первом приближении их значения можно принять постоянными для исследованных ти­пов диспергирующих устройств РПА.

На рис. 13 показаны опытные кривые НРХ сме­сителя модификации «В» при межцилиндровом за­зоре 0,4 мм, построенные в безразмерных координа­тах Eu – W.

Как видно из графика, полученные теоретиче­ские зависимости удовлетворительно описывают опытные данные; среднеквадратичная ошибка не превышает 15–20 %.

По результатам анализа теоретических и экспе­риментальных исследований предложены три новые конструкции  многоцелевых  РПА,  которые позво-

ляют интенсифицировать процессы гомогенизации, диспергирования, взбивания и абсорбции. Одна из них приведена на рис. 14.

 

Таблица 2

 

Постоянные напорно-расходной характеристики

РПА модификации «В»

 

Межцилиндровый

зазор, мм

0,2

0,3

0,4

0,5

0,6

0,7

Временной коэффи­циент истечения Kt

0,34

0,39

0,43

0,48

0,53

0,58

Коэффициент

гидравлического

сопротивления

0,1

0,1

0,1

0,1

0,1

0,1

Коэффициент a 10+3

0,08

0,15

0,32

0,48

0,26

0,45

Коэффициент b

6,3

5,6

4,9

4,6

5,1

4,8

 

 

 

Рис. 13. Зависимость критерия Эйлера от параметра  закрутки

 

 

 

Рис. 14. Роторно-пульсационный аппарат с рециклом:   1 – рабочая полость; 2 – штуцер входа жидкого компонента; 3 – штуцер входа газового компонента; 4 – штуцер выхода готовой смеси; 5, 6 – штуцер входа и выхода хладоносителя; 7 – газовая камера; 8, 9 – венцы статора; 10 – венец ротора; 11 – ступица ротора; 12 – вал; 13 – лопасти;           14 – отверстия в ступице ротора; 15 – каналы в зубьях статора; 16 – рубашка; 17 – регулировочные шайбы

 

Результаты работы и выводы

1. Исследована возможность совмещения в одном аппарате процессов смешивания и диспергирования. Установлено, что центробежные смесители с конус­ным ротором при оптимально рассчитанных геомет­рических и режимных параметрах обладают хорошей диспергирующей способностью.

2. Проведены экспериментальные исследования влияния режимных и геометрических параметров работы смесителей с направленной организацией движения материалопотоков на интенсивность и эффективность процесса смешивания. Получены математические модели в виде уравнений регрессии, позволяющие найти рациональные конструктивные и технологические параметры аппаратов. Уста-новлено, что интенсификации процесса способствует повышение накопительной и сглаживающей способностей аппаратов путем организации направленного движения прямых, рециркулирующих и пылевоздушных материалопотоков во внутреннем объеме аппарата за счет введения в его конструкцию дополнительных устройств.

3. Разработана гидродинамическая модель РПА, описывающая вихревые течения вязкой жидкости в его  рабочих зонах  при ламинарном  и турбулентном

режимах. Рассчитаны профили окружной скорости в межцилиндровых зазорах, роторе, статоре, дана оценка влияния радиального вдува на структуру вих­ревых течений РПА. Проведена проверка гидроди­намической модели на адекватность, определены значения эмпирических постоянных, входящих в расчетные зависимости. Определены границы пере­ходного режима вихревого потока в зазоре и значе­ния коэффициентов эквивалентной шероховатости и гидравлического сопротивления роторного и статор­ного цилиндров.

4. Аналитическим путем получены зависимости для определения коэффициента мощности ступени РПА при ламинарном и турбулентном режимах и обобщенная энергетическая характеристика РПА. Расчетом установлено и экспериментально под­тверждено наличие скачка мощности в переходной области.

5. Разработано количественное описание про­цесса преобразования механической энергии в РПА при прохождении потоком роторного и статорного цилиндров. Предложено обобщенное критериальное уравнение напорно-расходной характеристики РПА проходного типа, учитывающее влияние проскаль­зывания жидкости в роторе и гидравлические потери при обтекании прорезей статорного цилиндра.

6. Предложены три новые конструкции многоце­левых РПА (патенты № 2309791, 2257257, 22203728), где интенсификация процессов гомогени­зации, диспергирования, взбивания, абсорбции при получении жидких комбинированных продуктов достигается за счет подвода газовой фазы в актив­ную зону, организации регулируемого внутреннего рецикла и работы в резонансном режиме.

7. Результаты исследований и новые конструкции смесителей использованы при приготовлении смесей сухих и увлажненных комбинированных продуктов в технологических схемах получения регенерирован­ного молока на сухой молочной основе, «сухого мо­роженого», пшеничного зерна с дисперсными добав­ками в технологии производства сухих завтраков (хлебцев), мучных смесей для приготовления блинов и сдобного печенья, сухих посолочных композиций для мясных полуфабрикатов, смесей сухих специй в производстве рыбных продуктов. Ожидаемый эко­номический эффект от промышленного внедрения смесителя для получения сухих посолочных компо­зиций составил в ценах 2008 года 114 340 руб./год. Конструкторская техдокументация передана заказ­чикам для внедрения. Техническая новизна новых конструкций центробежных смесителей защищена 16 патентами РФ на изобретение.

 

Список литературы

1. Бакин, И.А. Теоретические и практи¬чес¬кие аспекты разработки конструкций центробежных смесителей для перера-ботки дисперсных материалов: монография / И.А. Бакин, В.Н. Иванец. – Кемерово: КемТИПП, 2007. – 156 с.

2. Иванец, Г.Е. Разработка циркуляционного смесителя центробежного типа для получения сухих и увлажненных композиций / Г.Е. Иванец, С.А. Ратников, И.А. Бакин, В.П. Зверев // Хранение и переработка сельхозсырья. – 2002. – № 6. – С. 60–61.

3. Иванец, В.Н. Разработка новых конструкций центробежных смесителей непрерывного действия для переработки дисперсных материалов / В.Н. Иванец, И.А. Бакин, Д.М. Бородулин // Известия вузов. Пищевая технология. – 2003. – № 4. – С. 94–98.

4. Иванец, В.Н. Интенсификация процесса смешивания за счет направленного формирования материальных и воздуш-ных потоков / В.Н. Иванец, И.А. Бакин, А.С. Волков // Химическая промышленность сегодня. – 2005. – № 11. – С. 52–56.

5. Иванец, В.Н. Определение диспергирующей способности центробежного смесителя / В.Н. Иванец, И.А. Бакин, М.М. Винниченко, С.Г. Чечко, В.И. Маньянов // Хранение и переработка сельхозсырья. – 2006. – № 7. – С. 68–70.

6. Бакин, И.А. Смешивание компонентов регенерированного молока / И.А. Бакин // Молочная промышленность. – 2006. – № 12. – С. 58–60.

7. Бакин, И.А. Совмещение процессов смешивания и диспергирования в конусном центробежном аппарате / И.А. Ба-кин, С.Г. Чечко, А.В. Сибиль // Хранение и переработка сельхозсырья. – 2009. – № 3. – С. 60–63.

8. Иванец, Г.Е. Энергетическая характеристика РПА / Г.Е. Иванец, В.А. Плотников, П.В. Плотников // ЖПХ. – 2000. – Т. 73. – Вып. 9. – С. 1511–1514.

9. Плотников, П.В. Гидродинамика межцилиндрового потока РПА / П.В. Плотников, Г.Е. Иванец, С.Н. Альбрехт // Хранение и переработка сельхозсырья. – 2000. – № 1. – С. 50–53.

10. Альбрехт, С.Н. Применение РПА при производстве молочных комбинированных продуктов / С.Н. Альбрехт, Г.Е. Иванец, П.В. Плотников // Хранение и переработка сельхозсырья. – 2000. – № 2. – С. 42–43.

11. Иванец, Г.Е. Роторно-пульсационный аппарат для интенсификации стадии перемешивания при производстве ком-бинированных продуктов / Г.Е. Иванец, С.Н. Альбрехт, П.В. Плотников // Известия вузов. Пищевая технология. – 2000. – № 2–3. – С. 59–61.

12. Иванец, В.Н. Повышение эффективности газожидкостных процессов в роторно-пульсационном аппарате / В.Н. Иванец, С.Н. Альбрехт, Г.Е. Иванец // Химическая промышленность. – 2000. – № 11. – С. 46–48.

13. Иванец, В.Н. Исследование влияния перемешивающих устройств на интенсификацию газожидкостных процессов / В.Н. Иванец, С.Н. Альбрехт, Г.Е. Иванец // Журнал прикладной химии. – 2001. – Т. 74. – Вып. 3. – С. 451–455.


Войти или Создать
* Забыли пароль?