Белгородская область, Россия
ВАК 05.17.00 Химическая технология
ВАК 05.23.00 Строительство и архитектура
УДК 69 Строительство. Строительные материалы. Строительно-монтажные работы
Для определения параметров диаграмм динамического растяжения бетона используется гипотеза о постоянстве энергетического критерия разрушения этого материала. Предложена эмпирическая зависимость для нахождения коэффициента динамической прочности бетона при растяжении с учетом времени его нагружения до разрушения. Для некоторых классов тяжелого бетона приведены конкретные значения параметров для этой зависимости. С помощью составленной программы расчета выявлено существенное влияние продолжительности импульсного нагружения на параметры диаграмм динамического растяжения бетона. Некоторые результаты расчетов представлены в статье.
динамическая прочность, импульсное нагружение, растяжение, энергетический критерий разрушения, диаграмма динамического растяжения бетона, численный эксперимент
В соответствии с действующим Техническим регламентом о безопасности зданий и сооружений в практику проектирования вводится требование к обеспечению прочности строительных конструкций, подвергаемых воздействию интенсивных кратковременных динамических нагрузок [2, 7]. Такие нагрузки могут быть вызваны действием на объекты ударных волн вследствие террористических актов, взрывов бытового газа и других аварийных ситуаций. При этом часто происходят значительные повреждения несущих и ограждающих конструкций, и даже их полное или частичное разрушение, которое может привести к травмам и гибели многих людей.
Поскольку данные динамические воздействия чаще относятся к аварийным, основное требование, предъявляемое к зданиям и сооружениям, состоит в том, что они должны выдержать без обрушения однократное воздействие сверхкратковременной (импульсной) динамической нагрузки [2, 7, 12].
Анализ существующих методов расчета показывает, что для решения многих задач динамического деформирования железобетонных конструкций наиболее приемлемой является деформационная расчетная модель железобетона [2, 9, 10], одним из важнейших элементов которой являются диаграммы деформирования бетона и арматуры.
Из экспериментальных данных [1, 3, 4, 6, 11, 15] следует, что прочность бетона при высокоскоростном нагружении существенно превышает значения, найденные в условиях стандартных испытаний, продолжительность которых исчисляется часами и минутами.
Повышенная ударная прочность обычно связывается с проявлением мгновенных внутренних сил вязкого сопротивления материала, непосредственно воспринимающих внешнее воздействие и тормозящих развитие деформаций бетона [2, 5, 12, 14], являющихся физической причиной его разрушения.
Как отмечается в монографии Ю.М. Баженова [1], для получения зависимости Rb = f(τ) были испытаны более 500 образцов различных бетонов. Бетоны испытывали при естественной влажности (после выдержки в течение нескольких суток на воздухе) и нормальной температуре – около 20 °С. Образцы нагружали на пневмодинамических установках, усилия регистрировали с помощью электронной аппаратуры. Минимальное время сжатия до разрушения составляло 0,001 с. Результаты опытов из монографии [1] представлены на рис. 1.
Рис. 1. Изменение коэффициента динамического упрочнения бетона при сжатии в зависимости от времени его нагружения до разрушения
Сопротивление бетона динамическому импульсному сжатию здесь оценивается коэффициентом динамического упрочнения Kd, который, являясь безразмерным критерием, позволяет обобщать результаты исследования бетонов различной прочности.
Полученные экспериментальные результаты совпадают с данными других исследователей: Д.И. Гладкова [4], О.П. Квирикадзе [6], Г.И. Попова [11], В.А. Рахманова, Е.Л. Розовского, И.А. Цупкова [13], К.А. Цветкова [15].
График, представленный на рис. 1, наглядно свидетельствует о том, что зависимость коэффициента динамического упрочнения от времени нагружения τ является нелинейной, и для её аналитической интерпретации в работе [1] предложена следующая эмпирическая формула:
, (1)
где τ – время нагружения бетонного образца до его разрушения при сжатии (в миллисекундах).
При этом зависимость (1) справедлива для интервала времени нагружения τ = 1 ÷ 2000 мсек.
Однако, проверка точности формулы (1) путём тщательного сопоставления численных результатов и графических данных, представленных на рис. 1, показывает их существенные различия на ряде участков. Для сближения аналитических и опытных данных зависимость (1) предлагается изменить следующим образом:
. (2)
В работе [1] приведены также данные о динамической прочности бетона при растяжении, которая определялась путем раскалывания бетонных цилиндров и кубов на пневмодинамическом прессе. Образцы были изготовлены из бетона на гранитном щебне. Зависимость коэффициента динамического упрочнения бетона при растяжении Kdt от времени нагружения по результатам этих опытов приведена на рис. 2.
Рис. 2. Изменение коэффициента динамического упрочнения бетона при растяжении в зависимости от времени его нагружения до разрушения
Аналогичные экспериментальные результаты были получены Л.Б. Гержулой [3] для различных временных периодов растяжения образцов до их разрыва.
Для аналитического описания полученной усредненной кривой в работе [1] используется зависимость:
. (3)
Проверка точности этой формулы (3) на основе сопоставления численных результатов и данных, представленных на графике (см. рис. 2), также выявила на ряде участков значительные неточности. Для сближения аналитических и опытных данных предлагается новая зависимость:
. (4)
Однако, у обеих представленных зависимостей, не смотря на их повышенную точность при сопоставлении с усреднёнными опытными данными, есть существенный недостаток, заключающийся в отсутствии учёта конкретных деформативно-прочностных свойств бетонов. Так, в ряде исследований [2, 5, 10, 12, 14] отмечается, что бетоны низкой и высокой прочности по-разному ведут себя (разрушаются) при импульсных динамических нагрузках. Например, численными исследованиями в работе [10] установлено, что с увеличением класса бетона коэффициент его динамической прочности при сжатии Kd снижается с 2,879 для В10 до 1,478 для В100.
Можно предположить, что влияние деформативно-прочностных свойств бетонов должно сказаться и на коэффициентах их динамической прочности при растяжении Kdt.
С целью получения достаточно простых по своей структуре расчетных формул и зависимостей, определяющих прочность бетона при импульсных динамических нагрузках, используем энергетический подход к разрушению бетона, впервые предложенный проф. В.М. Бондаренко [3] и получивший дальнейшее развитие в монографии С.И. Меркулова [8], где учёт режимности нагружения выполнен на основе постулата об инвариантности величины потенциальной энергии деформирования материала к моменту разрушения. Этот постулат сводится к простой формуле
, (5)
где – удельная потенциальная энергия разрушения бетона при непрерывном кратковременном сжатии; – то же, при длительном сжатии.
Представляется, что аналогичный подход можно применить для определения динамической прочности бетона, находящегося в условиях однородного напряженного состояния, характеризуемого малым временем растяжения образца до разрушения, исчисляемого секундами и их долями (рис. 3). При этом кривая 3 соответствует меньшему времени растяжения образца до разрушения по сравнению с кривой 2.
Рис. 3. Диаграммы деформирования бетона при
эталонном (кривая 1) и динамическом
растяжении с учетом различного времени нагружения образцов (кривые 2 и 3)
Для аналитического описания диаграмм растяжения бетона при эталонном (статическом) нагружении используем предложенную в работе [9] зависимость следующего вида:
, (6)
где Eb1 – начальный модуль упругости, общий для диаграмм сжатия и растяжения, рассчитываемый по методике [9]; Dbt1, Cbt1 – параметры нелинейности деформирования бетона при центральном растяжении, получаемые экспериментально-теоретическим путем [9]; sbt, ebt – текущие значения напряжений и деформаций растяжения.
Для аналитического описания диаграммы динамического растяжения бетона также используется зависимость (6), у которой параметры нелинейности ( , ) и функционально зависимые переменные , имеют соответствующий индекс принадлежности (d).
Принимаем следующие гипотезы и допущения для определения параметров диаграмм динамического растяжения бетона при различных скоростях нагружения:
– рассматривается растяжение бетонных образцов в условиях постоянной скорости увеличения напряжений (МПа/сек);
– величина удельной энергии деформирования бетона при однородном растяжении непосредственно перед его разрушением является константой, не зависящей от скорости нагружения образца;
– начальные модули упругости бетона при эталонном (статическом) и динамическом растяжении равны между собой;
– касательные модули деформаций в предельной точке диаграмм эталонного (статического) и динамического растяжения равны нулю.
Аналитическое отображение принятых гипотез приводит к следующей системе уравнений:
, (7)
, (8)
, (9)
. (10)
Последнее равенство отражает гипотезу об инвариантности величины удельной энергии деформирования бетона при растяжении непосредственно перед его разрушением. В результате интегрирования получаем следующую зависимость:
. (11)
В полученной системе четырёх уравнений (7), (8), (9), (11) неизвестными являются пять параметров ( , , , , ). В качестве недостающего пятого уравнения принимаем эмпирическую зависимость для нахождения коэффициента динамической прочности бетона при растяжении Kdt, качественный вид которой представлен на рис. 2:
(12)
где Rbt – прочность бетона при эталонном статическом растяжении; – динамическая прочность бетона при заданном времени действия (td) постоянно увеличивающейся растягивающей нагрузки; , , , – коэффициенты уравнения, получаемые с помощью обработки результатов экспериментальных исследований образцов из бетона одной прочности.
В таблице 1 на основании обобщения ограниченного объема экспериментальных данных, приведенных в работах [1, 3, 4], представлены значения коэффициентов уравнения , , , для некоторых классов тяжелого бетона. Параметр представляет собой максимально возможный по величине коэффициент динамической прочности бетона = / Rbt, который соответствует мгновенному растяжению образца до разрушения, т.е. при td = 0.
Таблица 1
Коэффициенты уравнения (12)
для некоторых классов тяжелого
бетона при динамическом растяжении
№ |
Класс бетона |
Параметр |
Параметр |
Параметр |
Параметр |
1 |
B10 |
1,368 |
233,27 |
233,27 |
1,8663·10-4 |
2 |
В30 |
1,385 |
233,35 |
233,35 |
2,0227·10-4 |
3 |
B50 |
1,406 |
233,43 |
233,42 |
2,3731·10-4 |
4 |
В60 |
1,416 |
233,46 |
233,45 |
2,4487·10-4 |
5 |
В80 |
1,434 |
233,50 |
233,48 |
2,3311·10-4 |
6 |
B100 |
1,457 |
233,55 |
233,53 |
2,5495·10-4 |
Из таблицы 1 следует, что динамические пределы прочности при растяжении у бетонов различных классов существенно различаются. Так, для низкопрочного бетона класса В10 динамический предел прочности более чем на 36 % превышает аналогичную величину Rbt, найденную при эталонном статическом растяжении. У высокопрочного бетона класса В100 это различие ещё больше (на 45,7 %). Следовательно, с увеличением класса бетона коэффициент его динамической прочности при растяжении повышается с 1,368 для В10 до 1,457 для В100.
Совместное решение уравнений (7), (8), (9), (11), (12) позволяет определить параметры зависимости (6), описывающей диаграмму центрального динамического растяжения бетона при заданном времени действия импульсного нагружения (td = 0,001…0,1). Учитывая нелинейный характер составленных уравнений, для их численного решения используется итерационная процедура, которая реализована в составленной программе расчета «Beton_6D». В качестве примера в таблице 2 приведены результаты расчетов искомых параметров диаграмм статического и динамического растяжения бетона класса В30 при различном времени нагружения стандартных образцов до разрушения.
Представленные в таблице 2 результаты показывают, что при уменьшении времени нагружения стандартных образцов с 50 сек до 1,0 сек изменения динамических величин прочности и относительной предельной деформации оказалось несущественным (< 1%). Дальнейшее сокращение времени нагружения бетона (0,01 сек) приводит уже к более заметным результатам: прочность повысилась на
11,5 %, а относительная деформация уменьшилась на 6,1 %. Для ещё более короткого интервала приложения разрушающей нагрузки (0,001 сек) прочность бетона возросла на 31,2 %, а относительная деформация сократилась на
13,7 %.
Таблица 2
Параметры диаграмм динамического растяжения тяжелого бетона класса B30
при различном времени нагружения стандартных образцов до разрушения
Время нагру-жения, сек |
Коэфф. |
Прочность на растяжение |
Параметр |
Параметр , МПа |
Параметр |
Параметр |
50 |
1,000 |
1,750 |
9,50·10-5 |
38377,0 |
-5048,76 |
885,21 |
1,0 |
1,002 |
1,754 |
9,49·10-5 |
38377,0 |
-5074,42 |
805,85 |
0,1 |
1,016 |
1,778 |
9,41·10-5 |
38377,0 |
-5229,44 |
335,92 |
0,01 |
1,115 |
1,951 |
8,92·10-5 |
38377,0 |
-6394,41 |
-2759,98 |
0,001 |
1,312 |
2,296 |
8,20·10-5 |
38377,0 |
-8884,94 |
-7658,16 |
Таким образом, на основе принятых гипотез и предпосылок разработана методика расчета динамической прочности бетона при различном времени нагружения элементов, включая определение параметров аналитических зависимостей, описывающих диаграммы центрального растяжения бетона при импульсном динамическом нагружении в условиях постоянной скорости увеличения напряжений в испытываемых до разрушения образцах.
1. Баженов Ю.М. Бетон при динамическом нагружении. М.: Стройиздат, 1970. 292 с.
2. Белов Н.Н., Копаница Д.Г., Кумпяк О.Г, Югов Н.Т. Расчет железобетонных конструкций на взрывные и ударные нагрузки. Нортхэмптон-Томск. 2004. 433 с.
3. Бондаренко В.М. Некоторые вопросы нелинейной теории железобетона. Харьков: Изд-во ХГУ, 1968. 324 с.
4. Гладков Д.И. Сопротивление бетона разрушению // Известия вузов. Строительство. 2004. № 8. С. 47–53.
5. Забегаев А.В. К построению общей модели деформирования бетона // Бетон и железобетон. 1994. № 6. С. 23–26.
6. Квирикадзе О.П. Влияние скорости загружения на деформации и прочность бетона // Ползучесть строительных материалов и конструкций: Сб. научн. трудов; Под ред. А.Р. Ржаницына. М.: Стройиздат, 1964. С. 269–276.
7. Колчунов В.И., Клюева Н.В., Андросова Н.Б., Бухтиярова А.С. Живучесть зданий и сооружений при запроектных воздействиях: Научное издание. М.: Изд-во АСВ, 2014. 208 с.
8. Меркулов С.И. Основы теории реконструкции железобетона: монография. Курск: Изд-во КГТУ, 2009. 248 с.
9. Никулин А.И. К определению предельной относительной деформации бетона в растянутой зоне изгибаемого железобетонного элемента [Электронный ресурс] // Современные проблемы науки и образования. 2014. № 6. Режим доступа: http://www.science-education.ru/120-16844 (дата обращения: 06.03.2016).
10. Никулин А.И., Али Фадиль А.Х. Прочность бетона при импульсном динамическом сжатии с учетом времени нагружения // Безопасность строительного фонда России. Проблемы и решения: материалы Международных академических чтений. Курск: Курск. гос. ун-т, 2014. С. 92–98.
11. Попов Г.И. Железобетонные конструкции, подверженные действию импульсных нагрузок. М.: Стройиздат, 1986. 128 с.
12. Попов Н.Н., Расторгуев Б.С. Особенности расчета конструкций на действие кратковременных динамических нагрузок // Бетон и железобетон. 1985. № 6. С. 15–16.
13. Рахманов В.А., Розовский Е.Л., Цупков И.А. Влияние динамического воздействия на прочностные и деформативные свойства тяжелого бетона // Бетон и железобетон. 1987. № 7. С. 19–20.
14. Тамразян А.Г., Хетагуров А.Т. К влиянию свободной воды на динамическое поведение бетона // Бетон и железобетон. 2002. № 3. С. 8–10.
15. Цветков К.А. Основные результаты экспериментально-теоретических исследований прочностных и деформативных свойств бетона при динамическом нагружении в условиях одноосного и двухосного сжатия // Вестник МГСУ. 2007. № 3. С. 109–120.