ТЕРМИЧЕСКАЯ ПЕРЕРАБОТКА НЕФТЯНЫХ И ГАЗОКОНДЕНСАТНЫХ ОСТАТКОВ В СРЕДЕ ВОДОРОДА
Аннотация и ключевые слова
Аннотация (русский):
Технологии процессов термической переработки углеводородных остатков в среде водорода или водородсодержащего газа условно разделяются на некаталитический гидровисбрекинг, гидровисбрекинг с использованием твёрдых адсорбентов и (или) каталитических добавок, висбрекинг с использованием доноров водорода и каталитический гидровисбрекинг. Некаталитический гидровисбрекинг используется как для облагораживания тяжёлых углеводородных остатков, так и для получения дополнительного количества облагороженного сырья каталитического крекинга и (или) гидрокрекинга. Гидровисбрекинг с использованием твёрдых адсорбентов и (или) каталитических добавок и висбрекинг с использованием доноров водорода целесообразно применять для повышения качества получаемых нефтепродуктов и снижения образования кокса при осуществлении технологического процесса. Каталитический гидровисбрекинг необходим при переработке сравнительно лёгких углеводородных остатков, таких как, например, газоконденсатные мазуты. В них, как правило, практически отсутствуют металлоорганические соединения, содержащие атомы никеля, кобальта и других каталитически активных элементов и способствующие реакциям гидрогенолиза, что приводит к малой степени обессеривания сырья (не более 15-20 %). В связи с этим предложено процесс гидровисбрекинга сернистых газоконденсатных остатков проводить в присутствии катализаторов, проявляющих сравнительно низкую каталитическую активность, особенно в реакциях крекинга, но частично восполняющих отсутствие в исходном сырье каталитически активных металлоорганических соединений. Анализ результатов исследований и литературных данных показал, что использование водорода (водородсодержащего газа) или ионов водорода позволяет в целом значительно интенсифицировать термические процессы переработки тяжёлых нефтяных и газоконденсатных остатков, поднять их эффективность и повысить качество получаемых нефтепродуктов.

Ключевые слова:
термические процессы, висбрекинг, гидровисбрекинг, водород, водородсодержащий газ, мазут, гудрон, каталитические добавки, доноры водорода, низкоактивные катализаторы
Текст
Введение Наиболее экономичным и привлекательным решением с точки зрения качества получаемой продукции является термическая переработка нефтяных и газоконденсатных остатков в среде водорода или водородсодержащего газа. В отличие от висбрекинга при гидровисбрекинге за счет насыщения водородом радикалов, образующихся при термодеструкции, удается снизить скорость вторичных реакций уплотнения и достичь большей степени конверсии исходного сырья и меньшего коксообразования. Первоначально подобный процесс разрабатывался только для переработки тяжёлых нефтяных остатков с большим содержанием асфальтенов, смол, металлов и других коксообразующих компонентов, но может быть применён и для переработки газоконденсатных остатков с учётом их особенностей. Способы термической переработки углеводородных остатков в среде водорода В настоящее время технологии процессов термической переработки углеводородных остатков в среде водорода (водородсодержащего газа) условно разделяются на следующие разновидности: - мягкий термический крекинг в среде водорода или водородсодержащего газа (некаталитический гидровисбрекинг); - гидровисбрекинг с использованием твёрдых адсорбентов и (или) каталитических добавок; - висбрекинг с использованием доноров водорода; - каталитический гидровисбрекинг. Некаталитический гидровисбрекинг. Некаталитический гидровисбрекинг имеет сходство как с висбрекингом, так и с каталитическим гидрокрекингом и осуществляется без катализатора с рециркуляцией водородсодержащего газа (водорода) при примерно тех же значениях температуры и времени контакта, что и гидрокрекинг. В отличие от висбрекинга при гидровисбрекинге глубина превращения сырья может достигать 90 % и степень обессеривания 50 %, но при этом уменьшается закоксовывание реакционного оборудования. Технологическая схема процесса подобна технологической схеме обычного висбрекинга, но имеет узлы ввода, смешения и сепарации водородсодержащего газа (водорода). Процесс проводится без значительного коксообразования только при высоком давлении, поскольку при этом увеличиваются растворимость водорода в нефтяных остатках и скорость реакций гидровисбрекинга. Типичный диапазон рабочих температур процесса - 450-550 °С, давления - 2-10 МПа и кратности циркуляции водородсодержащего газа - от 100 до 1000 нм3/м3 сырья, но может иметь и большие значения. Так, например, процесс гидровисбрекинга гудрона, разработанный фирмой «Лурги» и испытанный на пилотной установке, осуществлялся при температуре 380-420 °С и давлении 12-15 МПа, а степень превращения гудрона составляла 60-66 % мас. В Институте проблем нефтехимпереработки Академии наук Республики Башкортостан разработан отечественный вариант гидровисбрекинга. Согласно результатам исследований на гудроне западносибирской нефти, проведенных на пилотной установке, процесс целесообразно проводить при следующих оптимальных значениях технологических параметров: температура - 500 °С, давление - 5 МПа, кратность циркуляции водорода - 750 нм3/м3 сырья и объёмная скорость подачи сырья - 0,3 ч-1. Выход продуктов составил, % мас.: газа - 11,0; бензина - 6,3; лёгкого газойля (160-340 °С) - 25,2 и остатка выше 340 °С - 53,5. Потребление водорода составило приблизительно 1,0 % мас. Остаток гидровисбрекинга содержал 1,2 % мас. общей серы (в исходном гудроне - 2,3 % мас.) и мог использоваться как котельное топливо марки М-100 [1, 2]. Как установлено в [3], сравнительно высокая степень обессеривания в процессе гидровисбрекинга объясняется высокой концентрацией водорода и продувкой им реакционной массы при наличии в нефтяном остаточном сырье металлоорганических соединений в виде мыл и металлопорфиринов [4] (особенно содержащих атомы никеля, кобальта и др.), являющихся катализаторами гидрогенолиза. Эти соединения способствуют развитию реакций гидрогенолиза при некоторой блокировке реакций уплотнения и в конечном итоге обеспечивают, помимо повышенной степени обессеривания, повышенный выход углеводородного газа и бензина в процессе гидровисбрекинга. Этот постулат подтверждён экспериментальными данными. Так, при сравнении результатов гидровисбрекинга полугудронов различных нефтей установлено различие в глубине обессеривания, обусловленное содержанием металлов в исходном сырье: в арланском полугудроне содержание никеля на единицу массы серы составляло 1,2·10-3, а в западносибирском - 2,1·10-3, т. е. в 1,75 раза больше. При гидровисбрекинге глубина обессеривания западносибирского полугудрона получилась приблизительно в два раза больше, чем глубина обессеривания арланского полугудрона. Между соотношением никель : сера в сырье и глубиной обессеривания жидких продуктов гидровисбрекинга существует явная корреляция [5, 6]. Процесс может использоваться, помимо облагораживания и улучшения эксплуатационных характеристик котельных топлив, и для получения вторичного сырья каталитического крекинга или гидрокрекинга. Так, в [7] приведены результаты экспериментальных исследований процесса гидровисбрекинга мазута и гудрона западносибирской нефтесмеси на проточной пилотной установке с реакционной камерой, заполненной инертной кварцевой крошкой. Первоначально исходным сырьем являлся мазут, основные показатели качества которого приведены в табл. 1. В этой же таблице приведены усреднённые показатели технологического режима опытов, выход и основные показатели качества продуктов. Из табл. 1 следует, что в процессе гидровисбрекинга растёт выход фракции 350-540 °С на 2,6-3,8 % мас. и при этом образуется до 7,0-12,3 % мас. дизельного топлива. Однако необходимо заметить, что в опыте 6 при температуре 460 °С и времени реакции 60 минут глубина конверсии превышает оптимальный максимум и резко возрастает количество углеводородного газа, бензина и дизельного топлива при одновременном уменьшении количества вакуумного дистиллята. Наиболее рациональным является режим гидровисбрекинга при температуре 430-440 °С со временем реакции до 40-45 минут. В суммарном продукте гидровисбрекинга примерно в 2-3 раза снижается вязкость по сравнению с мазутом, незначительно падает содержание общей серы, вакуумный дистиллят (фракция 350-540 °С) имеет небольшую коксуемость. Таблица 1 Усредненные показатели процесса гидровисбрекинга мазута Показатель Мазут Опыты 1 2 3 4 5 6 Технологический режим Температура, °С Давление, МПа Кратность подачи водорода, нл/л Время реакции, мин - - - - 420 5,0 600 40 430 5,2 600 36 430 5,2 600 60 450 4,8 600 40 460 5,2 600 36 460 5,2 600 60 Выход продуктов, % мас. Углеводородный газ до С4 вкл. Бензин (фр. С5-200 °С) Дизельное топливо (фр. 200-350 °С) Вакуумный дистиллят (фр. 350-540 °С) Гудрон (фр. выше 540 °С) - - 3,5 46,0 50,5 1,3 0,3 10,6 49,8 38,0 1,6 0,6 11,9 49,5 36,4 4,1 3,1 13,2 49,1 30,5 3,4 2,4 15,2 48,6 30,4 3,3 2,3 15,8 49,4 29,2 7,8 6,8 21,3 43,0 21,1 Показатели качества мазута и суммарного продукта его конверсии Вязкость условная при температуре 80 °С, ВУ Коксуемость, % мас.* Содержание серы, % мас.** 12,2 6,7 2,0 11,1 7,5 1,9 10,9 7,8 1,9 5,5 7,8 1,85 4,8 7,8 1,83 2,9 6,6 1,9 1,9 7,4 1,7 * В том числе: фр. 350-540 °С - 0,35-0,45 % мас., остатка выше 540 °С - 21,0-25,0 % мас. ** В том числе: во фр. н. к. - 350 °С - 1,05-1,20 % мас., во фр. 350-540 °С - 1,70-1,72 % мас., в остатке выше 540 °С - 2,20-2,40 % мас. Однако процесс гидровисбрекинга мазута без его предварительной глубоковакуумной перегонки, несмотря на кажущуюся простоту такого пути увеличения ресурсов сырья каталитического крекинга или гидрокрекинга, характеризуется рядом существенных недостатков: - содержащееся в мазуте сырье каталитического крекинга (гидрокрекинга) подвергается воздействию высоких температур, что даже в присутствии водорода приводит к его термодеструкции и ухудшению показателей последующего процесса гидроочистки; - большие тепловые затраты на процесс из-за нагрева до высоких температур всего потока мазута и теплоёмкого водородсодержащего газа; - большие мощности и габариты высокотемпературных аппаратов - реакционной печи, выносной реакционной камеры и горячего испарителя высокого давления. Эти недостатки устраняются, если гидровисбрекингу подвергать не мазут, а гудрон. Экспериментальные исследования процесса гидровисбрекинга гудрона западносибирской нефтесмеси проводили на той же установке и по той же методике, что и опыты по гидровисбрекингу мазута [7]. Давление в системе составляло 5,0-5,2 МПа, температура процесса - 420-460 °С, кратность подачи водорода - 600 нл/л сырья и время реакции - 35-40 мин. Гудрон при температуре 20 °С имел плотность 966,8 кг/м3, коксуемость по Конрадсону - 18,1 % мас. и кинематическую вязкость при температуре 100 °С - 43,6 мм2/с. Суммарный выход фракций, выкипающих до 500 °С и поступающих затем на гидроочистку и каталитический крекинг (гидрокрекинг), составил по результатам опытов 15-20 % мас. на исходный гудрон. В табл. 2 приведены данные по процессам гидровисбрекинга мазута и гудрона, полученные экспериментальным и расчётным путем. Из табл. 2 следует, что гидровисбрекинг гудрона позволяет увеличить суммарный выход негидроочищенного сырья каталитического крекинга (прямогонный вакуумный дистиллят и продукты гидровисбрекинга, выкипающие до 500 °С на 13,1 % отн. Таблица 2 Сравнительные показатели процессов гидровисбрекинга мазута и гудрона Показатель Гидровисбрекинг мазута гудрона Количество, % мас. на мазут: прямогонного вакуумного дистиллята сырья процесса гидровисбрекинга водородсодержащего газа на смешение с сырьем продуктов гидровисбрекинга - сырья гидроочистки и каталитического крекинга суммарно негидроочищенного сырья каталитического крекинга (гидрокрекинга) - 100,0 4,2 63,6 63,6 49,8 44,7 3,0 22,1 71,9 Температура в реакционной камере, °С 440 430 Давление в системе, МПа 5,2 5,2 Кратность подачи водородсодержащего газа, нм3/м3 сырья 700 700 Время реакции, мин 40 35 Коксуемость жидких продуктов гидровисбрекинга, % мас. 7,8 7,6 Содержание во фр. 350-540 °С: общей серы, % мас. металлов, мг/кг 0,40 1,0 0,39 1,0 На основании этого положительного эффекта была разработана комбинированная технология получения сырья каталитического крекинга (гидрокрекинга), включающая в себя взаимосвязанные процессы вакуумной перегонки мазута, гидровисбрекинга гудрона с вакуумной перегонкой жидкого остатка этого процесса и гидроочистки сырья крекинга, состоящего из прямогонного вакуумного дистиллята и продуктов гидровисбрекинга, выкипающих до 500 °С [8]. Отличительными особенностями принципиальной схемы получения сырья каталитического крекинга (гидрокрекинга) по этой технологии являются: - повторное использование водородсодержащего газа, подаваемого в процесс гидровисбрекинга гудрона, при гидроочистке сырья каталитического крекинга (гидрокрекинга); - испарение под вакуумом (остаточное давление - 5-10 кПа) жидкого остатка гидровисбрекинга с получением дополнительного количества фракций, выкипающих до 500-540 °С. Такая взаимосвязь установок позволяет, помимо увеличения отбора сырья каталитического крекинга (гидрокрекинга), сократить суммарный объём водородсодержащего газа, циркулирующего в системах установок, и, как следствие этого, уменьшить, как показывают расчёты, энергетические затраты и капитальные вложения примерно на 10,5 %. Гидровисбрекинг с использованием твёрдых адсорбентов и (или) каталитических добавок. Для уменьшения коксообразования и повышения качества получаемых продуктов и технико-экономических показателей процесса гидровисбрекинга в целом, на зарубежных установках предлагается в тяжёлое углеводородное сырье, помимо водорода, предварительно вводить твёрдый адсорбент (уголь или отработанный катализатор). Образующийся в процессе кокс оседает на частицах адсорбента и выносится вместе с жидким потоком, в результате чего реакционное оборудование закоксовывается в значительно меньшей степени. Так, например, в процессе «Канмет», разработанном в Канаде, в качестве адсорбента используется добавка размолотого угля, пропитанного сульфатом железа, вводимая в сырье в количестве 0,5-5,0 % мас. В результате осуществления процесса достигнуты степень обессеривания исходного сырья в 60 % и снижение остаточного содержания металлов в тяжёлых фракциях полученного продукта до 0,005 % мас., при этом расход водорода составил 2 % мас. на сырьё. Фирмой «Феба Ойл» разработан процесс «Феба-Комби-крекинг», на первой ступени которого сырьё также подвергается жидкофазному гидрированию в присутствии одноразового порошкообразного катализатора. Последующее каталитическое гидрирование на второй ступени первичных продуктов конверсии в реакторе с неподвижным слоем катализатора позволяет получать гидроочищенные дистилляты и гидрированный остаток, который соответствует по качеству нефтяным спекающимся добавкам. Японскими специалистами для переработки в среде водородсодержащего газа тяжёлых остатков был использован отработанный измельчённый катализатор гидрообессеривания в количестве 3,37 % мас. на сырье. При температуре 450 °С и давлении 3-10 МПа глубина обессеривания составила 75 %. В Институте горючих ископаемых РАН предложен перспективный процесс производства компонентов моторных топлив из нефтяных остатков - процесс термохимической переработки мазутов и гудронов в присутствии горючих сланцев. Его отличительной особенностью является использование уникальных свойств сапропелитовых горючих ископаемых (прибалтийские сланцы, сернистые сланцы Поволжья, кузбасский сапромиксит, дальневосточные сапропелиты), являющихся донорами водорода и выступающих как генераторы радикалов и частично - как катализаторы крекинга. При нагревании горючего сланца до температуры 390-440 °С при давлении 3-8 МПа протекают процессы ожижения и распада органической массы сланца с образованием радикалов и продуктов, обладающих донорно-водородными свойствами (гидропроизводные конденсированных ароматических и гетероароматических углеводородов и циклические спирты), а минеральная часть сланца, состоящая в основном из алюмосиликатов и соединений железа, оказывает каталитическое воздействие. Установлено, что оптимальными параметрами процесса являются: температура - 415-425 °С, давление - 3-6 МПа, количество сланцевой добавки - 10-13 % мас. на сырье, время изотермической выдержки - 60 мин. При этом достигается выход светлых нефтепродуктов 50-60 % мас. и высококачественного вакуумного дистиллята (сырья каталитического крекинга) 15-20 % мас. [9]. Следует отметить, что в отличие от известных термодеструктивных процессов (термокрекинг, висбрекинг и др.) в разработанной технологии закоксовывания аппаратуры не происходит, т. к. проявляется еще одна функциональная особенность сланцевой добавки - вынос образующегося кокса. Органоминеральные добавки (горючие сланцы, сапропелиты, сапромикситы) для проведения процессов висбрекинга или гидровисбрекинга тяжёлых нефтяных остатков предложено использовать и в [10, 11], но при этом для измельчения добавок и их смешения и гомогенизации с сырьём применяют специальный метод - механохимическую дезинтеграцию реакционной среды (электромагнитный вихревой слой ферромагнитных элементов). Такая технология позволяет увеличить выход и повысить качество получаемых в процессе нефтепродуктов. Существует также разновидность двухступенчатого гидровисбрекинга с использованием на первой ступени стационарного слоя твёрдого непромотированного неорганического огнеупорного материала (оксиды алюминия, кремния и магния, фосфат алюминия, алюмосиликат, силикат, алюминат), предназначенного для понижения содержания коксообразующих компонентов в сырье, и на второй ступени - собственно гидровисбрекинга [12]. Для увеличения деметаллизации тяжёлых нефтяных остатков с целью их использования в качестве сырья каталитического крекинга может быть применена технология, по которой гидровисбрекинг проводят в жидкой фазе в смеси с водородсодержащим газом, причём эта смесь содержит частицы катализатора. Катализатор образуется при разложении катализаторного раствора металлосодержащего соединения, растворимого или диспергированного в сырье [13]. Несмотря на очевидные достоинства перечисленных процессов, необходимо отметить следующее: введение твёрдых адсорбентов или катализаторов требует дооборудования установки блоком предварительной подготовки адсорбента (катализатора) и, самое главное, стабильного обеспечения установки большим количеством адсорбционных материалов или отработанных катализаторов, что затрудняет промышленное внедрение этих процессов. Висбрекинг с использованием доноров водорода. Для снижения вязкости тяжёлых нефтяных остатков возможно проведение процесса висбрекинга с использованием вместо водородсодержащего газа доноров водорода. Так, в [14] предложена технология, по которой нефтяной остаток обрабатывают в течение 250-2500 секунд при температуре 427 °С в присутствии высокоароматизированного растворителя - донора водорода. Растворитель - донор водорода выделяют из жидких продуктов пиролиза углеводородного сырья (например, бензина). Растворитель - донор водорода содержит более 90 % ароматических соединений, из которых не менее 40 % составляют гидроароматические соединения. С целью снижения вязкости и повышения стабильности котельного топлива в [15] предложен процесс висбрекинга нефтяных остатков в присутствии 0,001-0,050 % добавки - ацетона, диэтилкетона или нитробензола, являющихся полярными соединениями. Добавку вводят в сырье процесса порционно при достижении следующих характерных значений температуры: 1) фазового перехода сырья из структурированного состояния в молекулярное; 2) начала деструкции асфальтенов; 3) начала распада ядер асфальтенов. Эксперименты показали, что применение ацетона позволяет понизить вязкость котельного топлива с 16,4 до 11,3 °ВУ и повысить его стабильность с 2,1 до 2,5 пунктов. Каталитический гидровисбрекинг. Технология гидровисбрекинга может быть применена и для газоконденсатных остатков, но с учетом специфических особенностей этого вида сырья. Газоконденсатные остатки, в отличие от аналогичного нефтяного сырья, характеризуются, с одной стороны, невысокой коксуемостью, сравнительно лёгким фракционным составом и незначительным содержанием асфальтосмолистых веществ, смол и тяжёлых металлов [16]. Это позволяет перерабатывать газоконденсатные остатки без применения специальных технологических приёмов и участия агентов, способствующих непрерывному удалению кокса. С другой стороны, в газоконденсатных остатках, как правило, отсутствуют металлоорганические соединения, способствующие реакциям гидрогенолиза, что приводит к значительному снижению степени обессеривания сырья [17-19]. Для определения технологических особенностей и принципов применения некаталитического гидровисбрекинга для переработки сернистых газоконденсатных остатков, в частности мазута Астраханского газоконденсатного месторождения, были проведены исследования этого процесса на проточной пилотной установке непрерывного действия [17]. Содержание общей серы в этом мазуте составляет 2,9-3,0 % мас. Исследования проводились при следующих технологических режимах: температура - 420-500 °С, давление - 2,0-4,0 МПа, кратность подачи водорода - 250-500 нл/л сырья, время пребывания сырья в реакционной зоне - 0,7-2,0 ч. В результате исследований было установлено, что глубина обессеривания газоконденсатного мазута не превысила 15,0 %. Такая низкая глубина обессеривания объясняется двумя причинами: - низкой реакционной способностью серосодержащих соединений мазута, представленных наиболее трудноудаляемыми классами сераорганических соединений - производными бензотиофена, дибензотиофена и бензонафтотиофена; - отсутствием в исходном газоконденсатном мазуте металлоорганических соединений, содержащих атомы никеля, кобальт и другие каталитически активные элементы. По результатам исследований предложено процесс гидровисбрекинга сернистых газоконденсатных остатков проводить в присутствии катализаторов, проявляющих сравнительно низкую каталитическую активность, особенно в реакциях крекинга. Низкая активность позволяет избежать чрезмерной деструкции тяжелых углеводородов, увеличить выход целевого продукта гидровисбрекинга - котельного топлива и уменьшить коксообразование. Эти катализаторы должны быть пористыми, обладать большими свободным объёмом и размерами частиц и высокой механической прочностью. Большие свободный объём и размеры частиц определённой формы образуют большие объёмы пустот, в которых происходит аккумулирование коксовых отложений и других нежелательных примесей из сырья процесса. Примером являются катализаторы, основные характеристики которых приведены в табл. 3. Таблица 3 Основные характеристики низкоактивных катализаторов Показатель Марки катализаторов Производство Новокуйбышевского завода катализаторов Производство фирмы «Хальдор Топсе» НКЮ-500 НКЮ-501 ТК-10 ТК-711 ТК-551 Форма частиц Кольца Рашига Цилиндры Таблетки с 7-ю сквозными аксиальными отверстиями и выпуклыми краями Кольца Кольца Химический состав NiO и CoO в сумме - не менее 1,0 %; МоО3 - не менее 4,0 % NiO - не менее 1,5-2,5 %; МоО3 - не менее 6,0-7,0 % MgAl2O4 NiO - не менее 2,0 %; МоО3 - не менее 6,0 % NiO - не менее 3,5 %; МоО3 - не менее 14,3 % Насыпная плотность при загрузке рукавом, кг/м3 500-800 600-800 800 500 500 Прочность на раздавливание, кг/мм: по радиальной по образующей - - - - 2 - - > 0,5 - > 0,5 Индекс прочности, кг/мм, не менее - 2,4 - - - Потери на истирание, % мас., не более - 0,5 - 3,0 3,0 Удельная поверхность, м2/г, не менее 50 50 - 135 185 Размеры, мм: внешний диаметр высота внутренний диаметр отверстий 15 15 6 3-4 - - 16 или 20 11 или 13 3,4 или 4,3 4,8 - - 2,4 - - Экономические и сопутствующие факторы, связанные с переработкой тяжёлых нефтяных и других углеводородных остатков, стимулируют появление новых технологий. Так, в США усовершенствован процесс гидроконверсии тяжёлых углеводородных остатков, имеющих коксуемость по Конрадсону 8-30 % мас. [20]. Процесс заключается в переработке исходного тяжёлого углеводородного остатка в зоне гидровисбрекинга в присутствии низкокислотного цеолитного катализатора и в последующем фракционировании гидрогенизата с получением дистиллятов и остатка, выкипающего выше 535-540 °С и кинематическая вязкость которого при температуре 38 °С находится в пределах 30-60 мм2/с. Температура в зоне гидровисбрекинга составляет 343-454 °С, давление - 1,4-13,8 МПа, время пребывания сырья - 0,2-10 ч. Катализатор, расположенный в зоне гидровисбрекинга, состоит: - из кристаллического цеолита с низкой кислотностью (соотношение кремния и алюминия - более 12,0, кислотная активность - менее 10 по α-шкале); - из гидрирующих металлических компонентов. В ионообменных центрах катализатора находятся катионы щелочных металлов. В Институте проблем переработки углеводородов и Институте катализа им. Г. К. Борескова (Сибирское отделение РАН) предложена технология снижения вязкости мазута путём его каталитического гидровисбрекинга в присутствии катализатора при температуре 300-600 °С, времени контакта мазута с катализатором 0,5-2,0 ч, давлении 4-6 МПа, кратности подачи водорода - 178-889 нм3/м3 мазута. В процессе используют катализатор, нанесённый на носитель с регулярной пространственной структурой макропор, при этом в качестве носителя катализатор содержит оксид алюминия, полученный с помощью темплатного синтеза, а в качестве активного компонента - соединения кобальта и молибдена [21]. Исследования показали, что эта технология позволяет получать из топочного мазута М-100 мазуты, кинематическая вязкость которых может быть снижена до значений, установленных ГОСТ 10585-99 для флотского мазута Ф-5. При определённом соотношении условий проведения технологического процесса можно получать нефтепродукты, которые будут соответствовать флотскому мазуту Ф-5 и по другим параметрам - массовой доле общей серы, коксуемости, температуре вспышки и застывания. Заключение По результатам исследований и критического анализа литературных данных установлено, что использование водорода (водородсодержащего газа) или ионов водорода позволяет значительно интенсифицировать термические процессы переработки тяжёлых нефтяных и газоконденсатных остатков, поднять их эффективность и повысить качество получаемых нефтепродуктов.
Список литературы

1. Валявин Г. Г. Современные и перспективные термолитические процессы глубокой переработки нефтяного сырья / Г. Г. Валявин, Р. Р. Суюнов, С. А. Ахметов, К. Г. Валявин; под ред. С. А. Ахметова. СПб.: Недра, 2010. 224 с.

2. Ишкильдин А. Ф. Новые технологии термических и гидротермических процессов переработки тяжелых нефтяных остатков: автореф. дис. … д-ра техн. наук / А. Ф. Ишкильдин. Уфа: УГНТУ, 1997. 46 с.

3. Таушев В. В. Висбрекинг гудрона в среде водорода / В. В. Таушев, Э. Г. Теляшев, Е. В. Таушева. Нефтепереработка и нефтехимия. 2013. № 1. С. 16-21.

4. Анчита Х. Переработка тяжелых нефтей и нефтяных остатков. Гидрогенизационные процессы / Анчита Х. Спейт Дж., Али С. А., Валенсуэла М. А.; Валенте Х. С.; под ред. О. Ф. Глаголевой. СПб.: ЦОП «Профессия», 2013. 384 с.

5. Манапов Э. М. Гидровисбрекинг нефтяных остатков / Э. М. Манапов, А. Ф. Ишкильдин, А. Ф. Ахметов // Химия и технология топлив и масел. 1997. № 5. С. 9-10.

6. Ишкильдин А. Ф. Новые технологии переработки тяжелых нефтяных остатков / А. Ф. Ишкильдин // Нефтегазопереработка и нефтехимия-2006: Междунар. науч.-практ. конф. (Уфа, 24 мая 2006 г.): материалы конф. Уфа, Изд-во ГУП ИНХП РБ, 2006. С. 66-67.

7. Тараканов Г. В. Основы технологии подготовки и глубокой переработки нефтяного сырья: дис.. д-ра техн. наук / Г. В. Тараканов. Астрахань, 1999. 288 с.

8. А. с. 1732682 СССР. Способ глубокой переработки мазута / Мановян А. К., Столяров В. В., Тараканов Г. В. (СССР); опубл. 15.04.1992.

9. Нефедов Б. К. Проблемы квалифицированной переработки тяжёлых нефтяных остатков / Б. К. Нефедов // Катализ в промышленности. 2004. № 3. С. 18-28.

10. Пат. 2132354 Российская Федерация, МПК6 C10G 9/00. Способ получения жидких продуктов из тяжёлых нефтяных остатков / Андриенко В. Г.; опубл. 27.06.1999.

11. Пат. 2132355 Российская Федерация, МПК6 C10G 9/00. Способ получения жидких продуктов из тяжёлых нефтяных остатков / Андриенко В. Г.; опубл. 27.06.1999.

12. Пат 4659452 США, МПК4 C10G 65/10, 65/12. Многоступенчатый способ гидрооблагораживания; опубл. 21.04.1987.

13. Заявка на патент 2603598 Франция, МПК C10G 49/12. Способ гидроочистки тяжелого углеводородного сырья; опубл. 11.03.1988.

14. Пат. 4308507 Германия, МПК5 C10G 47/34. Способ крекинга в присутствии растворителя - донора водорода // Изобретения стран мира. 1995. № 4.

15. Пат. 1587911 Российская Федерация, МПК5 C10G 9/16. Способ переработки остаточных нефтепродуктов / Баски М. Б.; опубл. 30.10.1994.

16. Тараканов Г. В. Глубокая переработка газовых конденсатов / Г. В. Тараканов, А. Ф. Нурахмедова, Н. В. Попадин. Астрахань: Факел, 2007. 273 с.

17. Нурахмедова А. Ф. Пути повышения потребительских свойств мазутов / А. Ф. Нурахмедова, Г. В. Тараканов, Н. В. Попадин, Э. Р. Сухаева // Нефтепереработка и нефтехимия-2007: Материалы Междунар. науч.-практ. конф. (Уфа, 22-25 мая 2007 г.). Уфа: Ин-т проблем нефтехимпереработки АН Республики Башкортостан, 2007. С. 77-78.

18. Каминский Э. Ф. Глубокая переработка нефти: технологический и экологический аспекты / Э. Ф. Каминский, В. А. Хавкин. М.: Техника, ТУМА ГРУПП, 2001. 384 с.

19. Берг Г. А. Каталитическое гидрооблагораживание нефтяных остатков / Г. А. Берг, С. Г. Хабибуллин. М.: Химия, 1986. 192 с.

20. Пат. 4411770 США, МПК3 C10G 47/20. Процесс гидровисбрекинга; опубл. 25.10.1983.

21. Пат. 2502787 Российская Федерация, МПК C10G 47/10. Способ уменьшения вязкости мазута / Окунев А. Г., Пархомчук Е. В., Лысиков А. И., Деревщиков В. С., Лавренов А. В., Лихолобов В. А.; опубл. 27.12.2013.


Войти или Создать
* Забыли пароль?