Рассматривается проблема подготовки данных для восстановления трёхмерной структуры сцены, составленной из точек, отрезков, прямых линий и т. д., используя видеоинформацию, получаемую с камеры, движущейся вокруг статической сцены. На основе анализа существующих методов представлена методика и алгоритм для выделения и подготовки данных для восстановления трёхмерной структуры сцены. За основу алгоритма взят фильтр Канни с оператором Собеля, дополненный вычислением дескрипторов из алгоритмов SURF (Speeded Up Robust Feature). Для фильтрации шумов с кадров предлагается использовать wavelet-фильтры, что позволит получить алгоритм выделения контура объекта в кадре и сопоставление его с контуром объекта на следующем кадре, что является входными данными для большинства алгоритмов восстановления трёхмерной сцены.
камера-обскура, SURF (Speeded Up Robust Feature), особые точки, трёхмерная структура, фильтр Калмана, фильтр Канни, подавление немаксимумов, сцена, градиент.
Введение. Область практического применения реалистической компьютерной графики в наши дни необычайно широка и включает в себя системы виртуальной реальности, реверс-инжиниринг, киноиндустрию, дизайн, компьютерные игры, научную визуализацию и т. д. Стремительно увеличивается число продуктов компьютерной графики, а вовлечение их в повседневную жизнь вызывает ответную реакцию потребителя, заключающуюся в непрерывном повышении требований к этим продуктам. И хотя рост вычислительных мощностей позволяет решать всё более сложные задачи визуализации трёхмерных сцен (число объектов, источников освещения, разрешение изображения), рост сложности самих задач опережает его, и актуальность этих задач растёт.
Одной из ведущих задач в компьютерной графике стало восстановление трёхмерной структуры сцены. Для восстановления структуры сцены требуется сбор информации о ней. Один из способов сбора информации о сцене — это видео- и фотосъёмка, но в полученных кадрах много шумов и второстепенной информации, кроме того информация с двух соседних кадров требует согласования и сведения кадров в стереопару. По данной задаче проводились исследования и есть результаты, но они не совершенны.
1. Ullman, S. The Interpretation of Visual Motion. Cambridge : MIT Press, 1979.
2. Longuet-Higgins, H. C. A computer algorithm for reconstructing a scene from two projections. Nature, 1981, vol. 293, pp. 133–135.
3. Weng, J., Huang, T. S., Ahuja, N. Motion and structure from two perspective views: Algorithms, error analysis, and error estimation. IEEE Trans. Pattern Anal. Machine Intell., 1989, vol. 11, no. 5, pp. 451–476.
4. Hu, X., Ahuja, N. Motion and structure estimation using long sequence motion models. Image and Vision Computing, 1993, vol. 11, no. 9, pp. 549–570.
5. Horn, B. K. P. Relative orientation. Int. J. Computer Vision, 1990, vol. 4, pp. 59–78.
6. Weng, J., Huang, T. S., Ahuja, N., Motion and Structure from Image Sequences, Springer Series on Information Sciences. Berlin, Springer-Verlag, 1993.
7. Herbert, B., Andreas, E., Tinne, T., Luc, V. G. SURF: Speeded Up Robust Features, Computer Vision and Image Understanding (CVIU). 2008, vol. 110, no. 3, pp. 346–359.
8. Грузман, И. С. Цифровая обработка изображений в информационных системах / И. С. Грузман [и др.]. — Новосибирск : Новосиб. гос. техн. ун-т, 2002. — 352 c.
9. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Analysis and Ma-chine Intelligence, 1986, vol. 8, no. 6, pp. 679–698.
10. Wyman, C. Canny Edge Detection. Advanced Computer Graphics (Advanced OpenGL Ren-dering), Syllabus for Spring 2008. Available at: http://homepage.cs.uiowa.edu/~cwyman/classes/spring08-22C251/homework/canny.pdf (accessed: 05.05.2014).
11. Kalra, P. K. Canny Edge Detection. Lectures on Digital Image Processing, 2009. Available at: http://www.cse.iitd.ernet.in/~pkalra/csl783/canny.pdf (accessed: 03.02.2014).
12. Moeslund, T. B. Image and Video Processing. Computer Vision and Media Technology, Alborg University, 2009.