На сегодняшний день методы лазерного воздействия применяются на коже намного чаще, чем на любых других тканях, что обусловлено исключительным разнообразием и распространенностью кожной патологии и различных косметических дефектов, а так же относительной простотой выполнения процедур, что связано с поверхностным расположением объектов, требующих лечения.Лазерное омоложение можно отнести к наиболее эффективным и универсальным методам борьбы с инволюционными изменениями кожи. Целевыми хромофорами для лазерного излучения являются практически все химические структуры кожи – вода, гемоглобин, меланин, коллаген. Селективность лазерного воздействия позволяет подобрать индивидуальную схему коррекции инволюционных нарушений кожи при любом типе ее старения кожи. Широкая востребованность лазерных процедур, их высокая эффективность диктуют необходимость обобщения имеющихся современных данных о преимуществах и особенностях применения, а так же по тактике ведения пациентов, что в значительной степени может помочь специалистам лазерной медицины в выборе наиболее рациональной технологии с корректным соотношением эффективности и безопасности. В данной обзорной статье приводятся современные данные о методике проведения лазерной шлифовки кожи с помощью СО2-лазера с описанием поэтапного ведения пациентов. Подробно описываются прогнозируемые побочные эффекты, нежелательные явления и методы их профилактики и коррекции.
лазер, фототермолиз, абляция
Методы лазерного воздействия применяются для манипуляций на коже намного чаще, чем на любых других тканях. Это объясняется двумя моментами. Во-первых, исключительным разнообразием и распространенностью кожной патологии и различных косметических дефектов, а во-вторых, относительной простотой выполнения процедур, что связано с поверхностным расположением объектов, требующих лечения.
Слово лазер – это побуквенный перевод англоязычного термина laser, сформированного из аббревиатуры от слов Light Amplification by Stimulated Emission of Radiation – усиление света посредством стимулированной эмиссии излучения.
Лазеры, используемые в медицине, генерируют излучение в видимой (λ – 380-760 нм), инфракрасной (λ>760 нм), ультрафиолетовой (λ<380 нм) и рентгеновской (λ<1 нм) областях спектра электромагнитных волн.
Основой работы лазера является его активная среда. Материалом для нее могут быть твердые тела (кристаллы, сплавы, полупроводники), жидкости (растворы красителей) или газы (СО2, галогены, инертные газы или газовые смеси). От состава активной среды зависит длина волны и некоторые другие параметры излучения, испускаемого данным лазером. Активация среды достигается с помощью электромагнитных волн или мощного светового потока, в результате чего происходит возбуждение большинства молекул и атомов до возбужденного (excited) состояния. Спонтанное возвращение к исходному состоянию единичных молекул и атомов среды сопровождается выходом из каждого из них светового кванта (фотона электромагнитного излучения). Соударение такого фотона с другой возбужденной мишенью ведет к выходу из нее своего фотона (стимулированный фотон – stimulated), а он в свою очередь даст начало следующему и т.д. таким
1. Неворотин А.И. Введение в лазерную хирургию: Учеб. пособие. Спб.: СпецЛит, 2000. 175 с.
2. Неворотин АИ. Лазерная рана в теоретическом и прикладном аспектах // Лазерная биология и лазерная медицина: практика. Мат. докл. респ. школы-семинара. Часть 2. Тарту – Пюхяярве: Изд-во Тартуского университета ЭССР, 1991. С. 3–12.
3. Effect of the laser beam on the skin: preliminary report / Goldman L., Blaney D.J., Kindel D.J. [et al]// J Invest Dermatol. 1963. V. 40. P. 121–122.
4. Anderson R.R., Parish J.A. The optics of human skin // J Invest Dermatol. 1981. V. 77. P. 13–19.
5. Extended theory of selective photothermolysis / Altshuler G.B., Anderson R.R., Manstein D. [et al]// Lasers in Surgery and Medicine. 2001. V. 29. P. 416–432.
6. Anderson R.R., Parrish J.A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation // Science. 1983. V. 220(4596). P. 524–527.
7. Visible action spectrum for melanin-specific selective photothermolysis / Margolis R.J., Dover J.S., Polla L.L. [et al]// Lasers Surg Med.1989. V. 9. P. 389–397.
8. Michael S. Kaminer, Kenneth A. Arndt, Jeffrey S. Dover [et al.] Atlas of cosmetic surgery/ Second edition. Saunders Elsevier, 2009.
9. Alster T.S. Manual of cutaneous laser techniques. Philadelphia, Pa; Lippincott, Williams & Wilkins, 2000.
10. Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides / Khatri K.A., Ross V., Grevelink J.M. [et al.]// Arch Dermatol. 1999. V. 135. P. 391–397.
11. Markolf H. Niemz. Laser-Tissue Interactions. Springer-Verlag, 1996
12. Ashley J. Welch and Martin J. C. van Gemert. Optical-Thermal Response of LaserIrradiated Tissue. Plenum Press, 1995.
13. Crochet J.J., Gnyawali S.C., Lemley Y.C.E.C., Wang L.V., Chen W.R. Temperature distribution in selective laser-tissue interaction // Journal of Biomedical Optics. 2006. V. 11(3).David J. Goldberg. Laser and lights, 2005.
14. Gereon Huttmann, Cuiping Yao, and Elmar Endl. New Concepts in Laser Medicine:Towards A Laser Surgery With Cellular Precision // Medical Laser Application. 2005. V. 20(2). P. 135–139.
15. Vincent K.M. Poon, Lin Huang, Andrew Burd. Biostimulation of dermal fibroblast by sublethal Q-switched Nd:YAG 532 nm laser: collagen remodeling and pigmentation // Journal of Photochemistry and Photobiology B: Biology. 2005. V. 81(1).
16. Derek A. Affonce and Alex J. Fowler. The effect of thermal lensing during selective photothermolysis // Journal of Quantitative Spectroscopy and Radiative Transferю 2002. V. 73(2-5). P. 473–479.
17. Bernstein E.F.. Laser treatment of tattoos // Clinics in Dermatology. 2006. V. 24(1).
18. Leandri M., Saturno M., Spodavecchia L., Iannetti G.D., Crucco G., Truni A.. Measurements of skin temperature after infrared laser stimulation // Clinical Neurophysiology. 2006. V. 36(4). P. 207–218.
19. Verkryusse W., Jia W., Franco W., Milner T. E., Nelson T.E. Infrared Measurement of Human Skin Temperature to Predict the Individual Maximum Safe Radiant Exposure (IMSRE) // Lasers in Surgery and Medicine. 2007. V. 39. P. 757–766.
20. Orazio Svelto and David C. Hanna. Principles of Lasers. Springer, 4th edition, 1998.
21. Lihong Wang and Steven L. Jacques. Monte Carlo Modeling of Light Transport in Multi-layered Tissues in Standard C, 1998.
22. Theoretical considerations in laser hair removal / Ross E.V., Ladin Z., Kreindel M. [et al].// Dermatol Clin. 1999. V. 17. P. 333–355.
23. King T.A., Lasers and Current Optical Techniques in Biology, G. Palumbo and R Pratesi (Eds.) (RSC, London, 2004) Chapter 2.
24. Clement R.M., Kiernan M.N., Donne K. Treatment of vascular lessions, US Patent 6398801 (2002).
25. Alena R.A.P. Medrado BS1, Lívia S. Pugliese BS2, Sílvia Regina A. Reis PhD2, Zilton A. Andrade MD1 Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts /Lasers in Surgery and Medicine. 2003. V. 32, N3. P. 239–244.
26. Sung Bin Cho MD1, Jin Young Jung MD1, Dong Jin Ryu MD1, Sang Ju Lee MD, PhD2, Ju Hee Lee MD, PhD1, Effects of ablative 10,600-nm carbon dioxide fractional laser therapy on suppurative diseases of the skin: A case series of 12 patients/ Lasers in Surgery and Medicine. Volume 41, Issue 8, pages 550–554, October 2009
27. Tsutomu Fujimura1, Yoshinori Takema PhD1, Shigeru Moriwaki1, Kazue Tsukahara1, Genji Imokawa PhD1, Akira Yamada MD2, Syuhei Imayama MD/ Analytical method to examine the effects of carbon dioxide lasers on skin: A study using wrinkles induced in hairless mice // Lasers in Surgery and Medicine. 2001. V. 28. N4. P. 348–354.
28. Shun Lee PhD1, Daniel J. McAuliffe MS1, Thomas J. Flotte MD1, Nikiforos Kollias PhD2, Apostolos G. Doukas PhD1 Photomechanical transdermal delivery: The effect of laser confinement // Lasers in Surgery and Medicine. 2001. V. 28, N4. P. 344–347.
29. Jenifer R. Lloyd DO1, Mirko Mirkov PhD Selective photothermolysis of the sebaceous glands for acne treatment // Lasers in Surgery and Medicine. 2002. V. 31. №2. P. 115–120.
30. Dan Zhu PhD, Qingming Luo PhD1, Guangming Zhu PhD, Wei Liu Kinetic thermal response and damage in laser coagulation of tissue // Lasers in Surgery and Medicine. 2002. V. 31. №5. P. 313–321.
31. Steven Dayan MD1, John F. Damrose MD, Tapan K. Bhattacharyya PhD, Steven Ross Mobley MD, Minu K. Patel MS, Kevin O´Grady BS, Steven Mandrea MD. Histological evaluations following 1,064-nm Nd:YAG laser resurfacing // Lasers in Surgery and Medicine. 2003. V.33. №2. P. 126–131.
32. Simone Laube MD, MRCP, Saleem Taibjee MRCPCH, Sean W. Lanigan MD, FRCP, DCH Treatment of resistant port wine stains with the V Beam® pulsed dye laser // Lasers in Surgery and Medicine. 2003. V.33. №5. P. 282–287.
33. Sol Kimel PhD, Lars O. Svaasand PhD, Marie J. Hammer-Wilson MS1, J. Stuart Nelson MD, PhD /Influence of wavelength on response to laser photothermolysis of blood vessels: Implications for port wine stain laser therapy // Lasers in Surgery and Medicine. 2003. V. 33. №5. P. 288–295.
34. Lene Hedelund MD1, Merete Haedersdal PhD, DMS, Henrik Egekvist PhD, Michael Heidenheim MD, Hans Christian Wulf DMS, Thomas Poulsen MD/ CO2 laser resurfacing and photocarcinogenesis: An experimental study // Lasers in Surgery and Medicine. 2004. V. 35. №1. P. 58–61.
35. D.J. McGill MRCS(Ed), C. Hutchison MA, E. McKenzie BSc, E. McSherry RGN, I.R. Mackay FRCS(Plast). A randomised, split-face comparison of facial hair removal with the alexandrite laser and intense pulsed light system // Lasers in Surgery and Medicine. 2007. V. 39. №10. P. 767–772.
36. Gitte F. Jørgensen MD, Lene Hedelund MD, PhD, Merete Hædersdal M, MD, DMedSci, PhD. Long-pulsed dye laser versus intense pulsed light for photodamaged skin: A randomized split-face trial with blinded response evaluation // Lasers in Surgery and Medicine. 2008. V.40. №5. P. 293–299.
37. Jihoon Kim PhD, Raheel John MS, Paul J. Wu PhD, Mary C. Martini MD, Joseph T. Walsh Jr. PhD. In vivo characterization of human pigmented lesions by degree of linear polarization image maps using incident linearly polarized light // Lasers in Surgery and Medicine. 2010. V. 42. №1. P. 76–85.
38. Syrus Karsai MD, Agnieszka Czarnecka MD, Michael Jünger MD, PhD, Christian Raulin MD, PhD. Ablative fractional lasers (CO2 and Er:YAG): A randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides // Lasers in Surgery and Medicine. 2010. V. 42. №2. P. 160–167.