Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
The article presents a new method of restoring the electron density profile (Ne) according to data from the Irkutsk Incoherent Scatter Radar (IISR). This method has been developed taking into account the Faraday rotation of the polarization plane, which leads to fading at the output of the IISR linearly polarized antenna. The concept of the method consists in fitting a height variation of electron density by a parametric model. As the model, a combination of two Chapman layers was used. This approach made it possible to implement a fully automatic data processing mode and increase the stability of the recovery of the Ne profile, especially according to data obtained during a period of low solar activity when the signal-to-noise ratio is low. Accuracy was increased by eliminating a number of operations leading to instability of data recovery in the presence of noise. The new method enabled fully automatic processing of long data series in the period 2007–2015.
incoherent scatter, ionosphere, electron density, Chapman layer
1. Akhiezer A.I., Akhiezer I.A., Polovin P.B., Sitenko A.G., Stepanov K.N. Elektrodinamika plazmy [Electrodynamics of plasma]. Moscow, Nauka Publ., 1974, 719 p. (In Russian).
2. Alsatkin S.S., Medvedev A.V., Ratovsky K.G. Some peculiarities in the ionosphere dynamics near the ionization maximum from Irkutsk Incoherent Scatter Radar data for low and moderate solar activities. Solar-Terr. Phys. 2015, vol. 1, iss. 3, pp. 28–36. DOI: 10.12737/11450. (In Russian).
3. Bard Y. Nonlinear Parameter Estimation. New York, Academic Press, 1974, 341 p.
4. Berngardt O.I. Radiolokatsionnye uravneniya v zadache odnokratnogo obratnogo rasseyaniya radiovoln: dis. … k.f.-m.n. [Radar equations in the problem of single backscattering of radio waves: Ph. D. thesis (in Phys. and Math.)]. Irkutsk, 2000, 145 p. (In Russian).
5. Bilitza D., Reinisch B. International Reference Ionosphere 2007: Improvements and new parameters. J. Adv. Space Res. 2008, vol. 42, no. 4, pp. 599–609. DOI: 10.1016/j.asr.2007. 07.048.
6. Daffet-Smit P. Prakticheskaya astronomiya s kal’kulyatorom. Moscow, Mir Publ., 1982. 176 p. (In Russian). (English edition: Duffett-Smith P. Practical Astronomy with Your Calculator. Cambridge University Press, 1988. 200 p.)
7. Dennis J.E., Schnabel R.B. Numerical methods for unconstrained optimization and nonlinear equation. Englewood Cliffs, Prentice-Hall, 1983, 378 p.
8. Dougherty J.P., Farley D.T. A Theory of incoherent scattering of radio waves by a plasma. Proc. of the Royal Society of London. Ser. A: Math., Phys. and Engin. Sci. 1961, vol. 259, no. 1296, pp. 79–99. DOI: 10.1098/rspa.1960.0212.
9. Evans J.V. Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE. 1969, vol. 57, pp. 496–530.
10. Ginzburg V.L. Rasprostranenie elektromagnitnykh voln v plazme [Propagation of electromagnetic waves in a plasma]. Moscow, Nauka Publ., 1967, 685 p. (In Russian).
11. Grigorenko E.I. Investigation of the ionosphere by observing the Faraday effect in incoherent scattering of radio waves. Ionosfernye issledovaniya [Ionospheric Research]. 1979, vol. 27, pp. 60–73. (In Russian).
12. Holt J.M., Rhoda D.A., Tetenbaum D., van Eyken A.P. Optimal analysis of incoherent scatter radar data. Radio Sci. 1992, vol. 27, no. 03, pp. 435–447. DOI: 10.1029/91RS02922.
13. Klimenko V.V., Klimenko M.V., Bryukhanov V.V. Numerical simulation of the electric field and zonal current in the Earth’s ionosphere — statement of the problem and test calculations. Matematicheskoe modelirovanie [Mathematical modeling]. 2006, vol. 18, no. 3, pp. 77–92. (In Russian).
14. Korenkov Y.N., Klimenko V.V., Forster M., Bessarab F.S., Surotkin V.A. Calculated and observed ionospheric parameters for Magion-2 passage above EISCAT on July 31 1990. J. Geophys. Res. 1998, vol. 103, no. A7, pp. 14,697–14,710. DOI: 10.1029/98JA00210.
15. Lehtinen M.S., Huuskonen A. General incoherent scatter analysis and GUISDAP. J. Atmos. Terr. Phys. 1996, vol. 58, no. 1-4, pp. 435–452. DOI: 10.1016/0021-9169(95)00047-X.
16. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., Alsatkin S.S., Shcherbakov A.A. Studying of the spatial-temporal structure of wavelike ionospheric disturbances on the base of Irkutsk Incoherent Scatter Radar and digisonde data. J. Atmos. Solar-Terr. Phys. 2013, vol. 105–106, pp. 350–357. DOI: 10.1016/j.jastp.2013.09.001.
17. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., Alsatkin S.S., Shcherbakov A.A. A statistical study of internal gravity wave characteristics using the combined Irkutsk Incoherent Scatter Radar and digisonde data. J. Atmos. Solar-Terr. Phys. 2015, vol. 132, pp. 13–21. DOI: 10.1016/j.jastp.2015.06.012.
18. Medvedev А.V., Ratovsky K.G., Tolstikov M.V., Oinats A.V., Alsatkin S.S., Zherebtsov G.A. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. J. Geophys. Res.: Space Phys. 2017, vol. 122, no. 7, pp. 7567–7580. DOI: 10.1002/2017JA024103.
19. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., Kushnarev D.S. Method for studying the spatial-temporal structure of wave-like disturbances in the ionosphere. Geomagnetism and Aeronomy. 2009, vol. 49, no. 6, pp. 775–785. DOI: 10.1134/S0016793209060115.
20. Namgaladze A.A., Korenkov Yu.N., Klimenko V.V., Karpov I.V., Bessarab F.S., Surotkin V.A., Glushchenko T.A., Naumova N.M. Global numerical model of the thermosphere, ionosphere and protonosphere of the Earth. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1990, vol. 30, no. 4, pp. 612–619. (In Russian).
21. Potekhin A.P., Medvedev A.V., Zavorin A.V., Kushnarev D.S., Lebedev V.P., Shpynev B.G. Development of diagnostic capabilities of the Irkutsk Incoherent Scattering Radar. Kosmicheskie issledovaniya [Cosmic Research]. 2008, vol. 46, no. 4, pp. 356–362. (In Russian).
22. Potekhin A.P., Medvedev A.V., Zavorin A.V., Kushnarev D.S., Lebedev V.P., Lepetaev V.V., Shpynev B.G. Recording and control digital systems of the Irkutsk Incoherent Scatter Radar. Geomagnetism and Aeronomy. 2009, vol. 49, no. 7, pp. 1011–1021. DOI: 10.1134/S0016793209070299.
23. Ratovsky K.G., Medvedev A.V., Tolstikov M.V., Kushnarev D.S. Case studies of height structure of TID propagation characteristics using cross-correlation analysis of incoherent scatter radar and DPS-4 ionosonde data. Adv. Space Res. 2008, vol. 41, no. 9, pp. 1453–1457. DOI: 10.1016/j.asr.2007.03.008.
24. Ratovsky K.G., Dmitriev A.V., Suvorova A.V., Shcherbakov A.A., Alsatkin S.S., Oinats A.V. Comparative study of COSMIC/FORMOSAT-3, Irkutsk Incoherent Scatter Radar, Irkutsk digisonde and IRI model electron density vertical profiles. Adv. Space Res. 2017, vol. 60, no. 2, pp. 452–460. DOI: 10.1016/j.asr.2016.12.026.
25. Shcherbakov A.A., Medvedev A.V., Kushnarev D.S., Tolstikov M.V., Alsatkin S.S. Calculation of meridional neutral winds in the middle latitudes from the Irkutsk Incoherent Scatter Radar. J. Geophys. Res.: Space Phys. 2015, vol. 120, no. 12, pp. 10,851–10,863. DOI: 10.1002/2015JA021678.
26. Shpynev B.G. Metody obrabotki signalov nekogerentnogo rasseyaniya s uchetom effekta Faradeya: dis. … k.f.-m.n. [Methods for processing incoherent scattering signals taking into account the Faraday effect: Ph. D. thesis (in Phys. and Math.)]. Irkutsk, 2000, 142 p. (In Russian).
27. Shpynev B.G. Incoherent scatter Faraday rotation measurements on a radar with single linear polarization. Radio Sci. 2004, vol. 39, RS3001. DOI: 10.1029/2001RS002523.
28. Suni A.L., Tereshchenko V.D., Tereshchenko E.D., Hudukon B.Z. Nekogerentnoe rasseyanie radiovoln v vysokoshirotnoi ionosfere [Incoherent scattering of radio waves in the high-latitude ionosphere]. Apatity, 1989, 182 p. (In Russian).
29. Tarantola A. Inverse Problem Theory. New York, Elsevier Science, 1987, 644 p.
30. Tashlykov V.P., Setov A.G., Medvedev A.V., Lebedev V.P., Kushnarev D.S. Ground clutter deducting technique for Irkutsk incoherent scatter radar. 2019 Russian Open Conference on Radio Wave Propagation (RWP). Kazan, Russia. 2019, pp. 175–178. DOI: 10.1109/RWP.2019.8810369.
31. Tkachev G.N., Rozumenko V.T. Faraday effect of incoherent scattering of radar signals. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1972, vol. 12, no. 4, pp. 657–661. (In Russian).
32. Tsyganenko N.A. A model of the near magnetosphere with a dawn–dusk asymmetry: 1. Mathematical structure. J. Geophys. Res. 2002a, vol. 107, no. A8, pp. 12,1–12,15. DOI: 10.1029/2001JA000219.
33. Tsyganenko N.A. A model of the near magnetosphere with a dawn–dusk asymmetry: 2. Parameterization and fitting to observations. J. Geophys. Res. 2002b, vol. 107, no. A8, pp. 10,1–10,17. DOI: 10.1029/2001JA000220.
34. Vierinen J., Lehtinen M., Orispaa М., Damtie В. General radar transmission codes that minimize measurement error of a static target. IEEE Transactions on Information Theory. 2007, vol. 1, no. 11, pр. 1–7.
35. Voronov A.L., Shpynev B.G. Excluding of convolution with sounding impulse in experimental incoherent scatter power profile. Proc. of SPIE.1998, vol. 3583, pp. 414–418.
36. Zherebtsov G.A., Zavorin A.V., Medvedev A.V., Nosov V.E., Potekhin A.P., Shpynev B.G. Irkutsk Incoherent Scattering Radar. Radiotekhnika i elektronika [J. Communications Technology and Electronics]. 2002, vol. 47, no. 11, pp. 1339–1345. (In Russian).
37. Zherebtsov G.A., Ratovsky K.G., Klimenko M.V., Klimenko V.V., Medvedev A.V., Alsatkin S.S., Oinats A.V., Lukianova R.Yu. Diurnal variations of the ionospheric electron density height profiles over Irkutsk: Comparison of the incoherent scatter radar measurements, GSM TIP simulations and IRI predictions. Adv. Space Res. 2017, vol. 60, pp. 444–451. DOI: 10.1016/j.asr.2016.12.008.
38. URL: http://ckp-rf.ru/usu/77733 (accessed 30 September 2019).
39. URL: http://ckp-rf.ru/ckp/3056 (accessed 30 September 2019).