MODERN HEATING FACILITY FOR RESEARCH INTO THE MID-LATITUDE IONOSPHERE
Рубрики: REVIEWS
Аннотация и ключевые слова
Аннотация (русский):
The development of new devices for research in physics of the upper atmosphere and near-Earth space, which can be used to carry out controlled experiments on the modification of the ionosphere by powerful short-wave radiation, is an urgent task of modern solar-terrestrial physics, space weather, operation of satellite constellations in near-Earth space, radio communications, and radar. The paper describes a modern heating facility, created within the framework of the National Heliogeophysical Complex of the Russian Academy of Sciences. We review the tasks facing the heater, discuss its main technical characteristics, and describe the capability of the observational infrastructure surrounding the heating facility. The paper justifies the long-term benefits of the development of a heating facility at middle latitudes of Eastern Siberia, which can radiate in a frequency range 2.5–6.0 MHz with an effective power of the order of several hundred megawatts. It is important that the heater will be surrounded by such multifunctional instruments as the modern incoherent scatter radar, mesostratospheric lidar, observational systems that can provide a wide range of possibilities for diagnosing artificial plasma disturbances and artificial airglow structures.

Ключевые слова:
radiophysics, ionosphere, heating facility, solar-terrestrial physics, space weather
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Afraimovich E.L., Perevalova Y.P. GPS-monitoring verkhnei atmosfery Zemli [GPS Monitoring of Earth’s Upper Atmosphere]. Irkutsk, 2006, 480 p. (In Russian).

2. Akchurin A.D., Yusupov K.N., Sherstyukov O.N., Ildirya-kov V.R. Disclosure of transient and small-scale irregularities in the one-minute ionograms of “Cyclon” ionosonde. Heliogeophys. Res. 2013, no. 4. pp. 101–110. (In Russian).

3. Andreeva E.S., Frolov V.L., Kunitsyn V.E., Kryukovskii A.S., Lukin D.S., Nazarenko M.O., Padokhin A.M. Radiotomography and HF ray tracing of the artificially disturbed ionosphere above the Sura heating facility. Radio Sci. 2016, vol. 51, iss. 6, pp. 638–644. DOI: 10.1002/2015RS005939.

4. Balanis C.A. Antenna Theory. Analysis and Design. Third Edition. John Wiley & Sons, Inc. Publ., 2005. 1099 p.

5. Belikovich V.V., Benediktov E.A., Tolmacheva A.V., Bakhmetyeva N.V. Issledovanie ionosfery s pomoshchyu iskusstvennykh periodicheskikh neodnorodnostei [Research into the Ionosphere from Artificial Periodic Irregularities]. Nizhny Novgoro, IAP RAS Publ., 1999, 156 p. (In Russian).

6. Belyaev P.P., Kotik D.S., Mityakov S.N., Polyakov S.V., Rapoport V.O., Trakhtengerts V.Yu. Generation of signals of combination frequencies in the ionosphere. Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics]. 1987, vol. 30, no. 2. pp. 248–286. (In Russian).

7. Bernhardt P.A., Wong М, Huba J.D., Fejer B.J., Wagner L.S., Goldstain J.A., Selcher G.A., Frolov V.L., Sergeev E.N. Optical remote sensing of the thermoshere with HF pumped artificial airglow. J. Geophys. Res. 2000, vol. 105, no. A5, pp. 10657–10671.

8. Biondi A.A., Sipler D.P., Hake R.D. Jr. Optical (λ=6300) detection of radio frequency heating of electrons in the F-region. J. Geophys. Res. 1970, vol. 75, no. 31, p. 6421.

9. Chernogor L.F., Garmash K.P., Frolov V.L. Large-scale disturbances in the lower and middle ionosphere accompanied the action on the ionosphere by Sura heating facility. Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics]. 2019, vol. 62, no. 6, pp. 440–459. (In Russian).

10. Erukhimov L.M., Metelev S.A., Myasnikov E.N., Mitya-kov N.A., Frolov V.L. Artificial ionospheric turbulence (review). Radiophys. Quantum Electronics. 1987, vol. 30, no. 2, pp. 208–225.

11. Erukhimov L.M., Genkin L.G. The ionosphere as a space plasma laboratory (review). Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics]. 1992, vol. 35, no. 11-12, pp. 863–888. (In Russian).

12. Frolov V.L. Iskusstvennaya turbulentnost’ sredneshirotnoi ionosfery [Artificial turbulence of the Mid-Latitude Ionosphere]. Nizhny Novgorod, National Research Lobachevsky State University Publ. 2017, 468 p. (In Russian).

13. Frolov V.L., Rapoport V.O., Shorokhova E.A. Characteristics of electromagnetic and plasma disturbances induced at Earth’s outer ionosphere heights when modifying F2 region by powerful HF radiation from Sura heating facility. 2016, vol. 59, no. 3. pp. 198–222. (In Russian).

14. Frolov V.L., Akchurin A.D., Bolotin I.A., Ryabov A.O., Bertlie Zh.-Zh. Energetic electron precipitation from Earth’s radiation belt induced by the modification of the mid-latitude ionosphere by high-power HF radio waves. Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics]. 2019, vol. 62, no. 9. (In Russian).

15. Ginsburg V.L. Rasprostranenie electromagnitnykh voln v plazme [Propagation of electroimagnetic waves in plasma]. Moscow, Nauka Publ. 1967, 683 p. (In Russian).

16. Grach S.M. On kinetic effects in the F region of the ionosphere disturbed by high-power radio waves. Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics]. 1999. vol. 42, no. 7, pp. 651–669. (In Russian).

17. Grach S.M., Men’kova Yu. E., Stubbe P. On the penetration of upper hybrid waves into a plasma depletion. Adv. Space Res. 2004, vol. 34, iss. 11, pp. 2428–2432.

18. Grach S.M., Sergeev E.N., Shindin A.V., Mishin E.V., Botkine B. Artificial ionospheric layers at pump wave frequencies in the 4th electron giroharmonic range at HAARP facility. Doklady AN [Doklady Physics]. 2014, vol. 454, no 5, pp. 526–530. (In Russian).

19. Grach S.M., Sergeev E.N., Mishin E.V. Dynamic characteristics of the ionosphere plasma turbulence induced by the action of high-power HF radiation. Uspekhi fizicheskikh nauk [Physics-Uspekhi]. 2016, vol. 186, no. 11, pp. 1189–1228. DOI: 10.3367/UFNr.2016.07.037868. (In Russian).

20. Gurevich A.V. Nonlinear effects in the ionosphere. Uspekhi fizicheskikh nauk [Physics-Uspekhi]. 2007, vol. 177, no. 11, pp. 1145–1177. DOI: 10.3367/UFNr.0177.200711a.1145. (In Russian).

21. Gustavsson B., Sergienko T., Rietveld M.T., Honary F., Steen A., Brändström B.U.E., et al. First tomographic estimate of volume distribution of HF-pump enhanced airglow emission. J. Geophys. Res.: Space Phys. 2001, vol. 106, no. A12, pp. 29105–29124.

22. Gustavsson B., Kosch M., Wong A., Pedersen T., Heinselman C., Mutiso C., et al. First estimates of volume distribution of HF-pump enhancedemissions at 6300 and 5577 Å: a comparison between observationsand theory. Ann. Geophys. 2008, vol. 26, no. 12, pp. 3999–4012.

23. Gurevich A.V. Nonlinear phenomena in the ionosphere. New York: Springer Publ. 1978, 372 p.

24. Gurevich A.V., Dimant Ya.S., Milikh G.M., Vaskov V.V. Multiple acceleration of electrons in the regions of high-power radio-wave reflection in the ionosphere. J. Atmos. Terr. Phys. 1985, vol. 47, no. 11, pp. 1057–1070.

25. Haslett J.C., Megill L.R. A model of the enhanced airglow excited by RF radiation. Radio Sci. 1974, vol. 9, no. 11, p. 1005.

26. Haines D.M., Reinisch B.W. Digisonde Portable Sounder System Manual. University of Massachusetts Lowell Center for Atmospheric Research. 1995, 45 p.

27. J. Atmos. Terr. Phys. 1982, vol. 44, no. 12, pp. 1005–1171. (Special Iss.).

28. J. Atmos. Terr. Phys. 1985, vol. 47, no. 12, pp. 1149–1333. (Special Iss.).

29. J. Atmos. Terr. Phys. 1997, vol. 59, no. 18, pp. 2251–2488. (Special Iss.).

30. J. Geophys. Res. 1970, vol. 75, no. 31, pp. 5961–6452. (Special Iss.).

31. Kosch M.J., Rietveld M.T., Kavanagh A.J., Davis C., Yeoman T.K., Honary F., Hagfors T. High-latitude pump-induced optical emissions for frequencies close to the third electron gyro-harmonic. Geophys. Res. Lett. 2002, vol. 29, iss. 23, CiteID 2112. DOI: 10.1029/2002GL015744.

32. Kosch M.J., Pedersen T., Mishin E., Oyama S., Hughes J., Senior A., Watkins B., Bristow B. Coordinated optical and radar observations of ionospheric pumping for a frequency pass through the second electron gyroharmonic at HAARP. J. Geophys. Res. 2007, vol. 112, A12317. DOI: 10.1029/ 2006JA015854.

33. Kunitsyn V.E., Padokhin A.M., Vasiliev A.E., Kurbatov G.A., Frolov V.L., Komrakov G.P. Study of GNSS-measured ionospheric total electron content variations generated by powerful HF-heating. Adv. Space Res. 2011, vol. 47, no. 10, pp. 1743–1749. DOI: 10.1016/j.asr.2010.03.031.

34. Kunitsyn V.E., Andreeva E.S., Frolov V.L., Komrakov G.P., Nazarenko M.O., Padokhin A.M. Sounding of HF heating‐induced artificial ionospheric disturbances by navigational satellite radio transmissions. Radio Sci. 2012, vol. 47, RS0L15. DOI: 10.1029/2011RS004957.

35. Kunitsyn V., Kurbatov G., Yasyukevich Yu., Padokhin A. Investigation of SBAS L1/L5 signals and their application to the ionospheric TEC studies. Geoscience and Remote Sensing Lett. 2015, vol. 12, no. 3, pp. 547–551. DOI: 10.1109/LGRS. 2014.2350037.

36. Kurkin V.I., Laryunin O.A., Podlesnyi A.V. Analysis of quasi-wave ionospheric disturbances using amplitude maps from ISTP SB RAS LFM ionosonde data. Proc. XXIV Russian National Scientific Conference “Radio Wave Propagation (RWP-24)”. Irkutsk, 2014, pp. 214–215. (In Russian).

37. Laryunin O.A., Kurkin V.I. Restoring the parameters of ionospheric disturbances from dynamics of sickle-shaped structures on ionograms. Solnechno-zemnaya fizika [Solar-Terrestrial Physics] 2011, iss. 19, pp. 107–115. (In Russian).

38. Laryunin O.A., Kurkin V.I., Podlesnyi A.V. Using data of two closely spaced ionosondes when detecting travelling ionospheric disturbances. Elektromagnitnye volny I elektronnye sistemy [J. Electromagnetic Waves and Electronic Systems]. 2014, vol. 19, no. 1, pp. 10–17. (In Russian).

39. Leyser T.B. Stimulated electromagnetic emissions by high‐frequency electromagnetic pumping of the ionospheric plasma. Space Sci. Rev. 2001, vol. 98, no. 3-4, pp. 223–328. DOI: 10.1023/A:1013875603938.

40. Lukianova R., Frolov V., Ryabov A. First SWARM observations of the artificial ionospheric plasma disturbances and field-aligned currents induced by the SURA power HF heating. Geophys. Res. Lett. 2019, (accepted for publication, Paper #2019GL085833R). DOI: 10.1029/2019GL085833.

41. Medvedev A.V., Potekhin A.P. Irkutsk Incoherent Scatter Radar: history, present and future. History of Geo- and Space Sci. 2019, vol. 10, iss. 2, pp. 215–224. DOI: 10.5194/hgss-10-215-2019.

42. Mishin E., Sutton E., Milikh G., Galkin I., Roth C., Forster M. F2-region atmospheric gravity waves due to high-power HF heating and subauroral polarization streams. Geophys. Res. Lett. 2012, vol. 39, L11101. DOI: 10.1029/2012GL052004.

43. Mishin E., Wotkins B., Lehtinen N., Eliassoon B., Pedersen N., Grach S. Artificial ionospheric layers driven by high-frequency radio waves: An assessment. J. Geophys. Res.: Space Phys. 2016, vol. 121, iss. 4, pp. 3497–3524. DOI: 10.1002/2015 JA021823.

44. Mikhailov S.Ya. Ambiguity of restoring profiles of plasma frequency by given height–frequency characteristic, and their distinguishability for oblique propagation of short radio waves in the isotropic ionosphere. Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics]. 2000, vol. XLII, no. 10, pp. 855–872. (In Russian).

45. Oinats A.V., Kurkin V.I., Nishitani N., Saito A. Determi-ning parameters of travelling ionospheric disturbances from SuperDARN data. Elektromagnitnye volny I elektronnye sistemy [J. Electromagnetic Waves and Electronic Systems]. 2013, vol. 18, no. 8, pp. 30–39. (In Russian).

46. Oinats A.V., Nishitani N., Ponomarenko P., Ratovsky K.G. Diurnal and seasonal behavior of the Hokkaido East SuperDARN ground backscatter: simulation and observation. Earth, Planets and Space. 2016, vol. 68, article id. 18. DOI: 10.1186/s40623-015-0378-9.

47. Pedersen T., Gustavsson B., Mishin E., MacKenzie E., Carlson H.C., Starks M., Mills T. Optical ring formation and ionization production in high-power HF heating experiments at HAARP. Geophys. Res. Lett. 2009, vol. 36, iss. 18, L18107. DOI: 10.1029/2009GL040047.

48. Pedersen T.R., Holmes J.M., Gustavsson B., Mills T.J. Optical imaging of artificial ionospheric plasmas. IEEE Trans. Plasma Sci. 2011a, vol. 39, no. 11, pp. 2704–2705.

49. Pedersen T., McCarrick M., Reinisch B., Watkins B., Hamel R., Paznukhov V. Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic. Ann. Geophys. 2011b, vol. 29, pp. 47–51. DOI: 10.5194/angeo-29-47-2011.

50. Perkins F.W., Oberman C., Valeo E.J. Parametric instabilities and ionospheric modification. J. Geophys. Res. 1974, vol. 79, no. A10, pp. 1478–1496.

51. Podlesnyi A.V., Bryn’ko I.G., Kurkin V.I., Berezovsky V.A., Kiselev A.M., Petukhov E.V. Multi-functional LFM ionosonde for the ionosphere monitoring. Geliogeofizicheskie issledovaniya [Heliogeophys, Res.]. 2013, no. 4, pp. 24–31. (In Russian).

52. Potekhin A.P., Setov A.G., Lebedev V.P., Kushnarev D.S. Perspective IS-MST radar: potential and diagnostic capabilities. Solar-Terr. Phys. 2016, vol. 2, no 3, pp. 3–21. DOI: 10.12737/22281.

53. Radiophysics and Quantum Electronics. 1999, vol. 42, no. 7-8, pp. 525–736. (Special Iss.).

54. Radiophysics and Quantum Electronics. 2005, vol. 48, no. 9, pp. 639–730. (Special Iss.).

55. Radiophysics and Quantum Electronics. 2008, vol. 51, no. 11, pp. 862–889. (Special Iss.).

56. Radiophysics and Quantum Electronics. 2012, vol. 55, no. 1-2, pp. 1–141. (Special Iss.).

57. Reinisch B.W., Huang X. Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomsideionograms. Radio Sci. 1983, vol. 18, no. 3, pp. 477–492.

58. Sergeev E., Grach S., Shindin A., Mishin E., Bernhardt P., Briczinski S., Isham B., Broughton M., Labelle J., Watkins B. Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP. Phys. Rev. Lett. 2013, vol. 110, iss. 6-8, 065002. DOI: 10.1103/PhysRevLett. 110.065002.

59. Sharp E. A triangular arrangement of planar-array elements that reduces the number needed. IRE Transactions on Antennas and Propagation. 1961, vol. 9, no. 2, pp. 126–129. DOI: 10.1109/TAP.1961.1144967.

60. Shindin A.V., Klimenko V.V., Kogogin D.A., Beletsky A.B., Grach S.M., Nasyrov I.A., Sergeev E.N. Spatial characteristics of the 630-nm artificial ionospheric airglow generation region during the Sura facility pumping. Radiophysics and Quantum Electronics. 2018, vol. 60, no. 11, pp. 849–865. DOI: 10.1007/s11141-018-9852-0.

61. Shiokawa K., Otsuka Y., Oyama S., Nozawa S., Satoh M., Katoh Y., et al. Development of low-cost sky-scanning Fabry—Perot interferometers for airglow and auroral studies. Earth, Planets and Space. 2012, vol. 64, iss. 11, pp. 1033–1046. DOI: 10.5047/eps.2012.05.004.

62. Shlyuger I.S. Self-modulation of powerful electromagnetic pulse reflected from upper layers of the ionosphere. (In Russian). Pis’ma v ZhETF [JETP Lett.] 1974, vol. 19, iss. 5, pp. 247–251. (In Russian).

63. Streltsov A.V., Berthelier J.J., Chernyshov A.A., Frolov V.L., Honary F., Kosch M.J., et al. Past, Present and Future of Active Radio Frequency Experiments in Space. Space Sci. Rev. 2018, vol. 214, no. 118. DOI: 10.1007/s11214-018-0549-7.

64. Stubbe P. Review of ionospheric modification experiments at Tromsø. J. Atmos. Terr. Phys. 1996, vol. 58, no. 1-4, pp. 349–368. DOI: 10.1016/0021-9169(95)00041-0.

65. Stubbe P., Hagfors T. The Earth’s ionosphere: A wall-less plasma laboratory. Surveys in Geophysics. 1997, vol. 18, no. 1, pp. 57–127. DOI: 10.1023/A:10065831.

66. Stubbe P., Kopka H., Dowden R.L. Generation of ELF and VLF waves by polar electrojet modulation: Experimental results. J. Geophys. Res. 1981, vol. 86, no. A11, pp. 9073–9078.

67. Vartanyan A., Milikh G.M., Mishin E., Parrot M., Galkin I., Reinisch B., et al. Artificial ducts caused by HF heating of the ionosphere by HAARP. J. Geophys. Res. 2012, vol. 117, A10307. DOI: 10.1029/2012JA017563.

68. Vas’kov V.V., Gurevich A.V., Dimant Ya.S. MUltiple acceleration of electrons in plasma resonance. Journal of Experimental and Theoretical Physics. 1983, vol. 57, no. 2, p. 310.

69. Yasyukevich Yu.V., Vesnin A.M., Perevalova N.P. SibNet — Siberian Global Navigation Satellite System Network: Current state. Solar-Terr. Phys. 2018, vol. 4, no. 4, pp. 63–72. DOI: 10.12737/stp-44201809.

Войти или Создать
* Забыли пароль?