GRAVITY INTERPRETATION OF THE ERZINCAN-CAYIRLI BASIN ITS CONNECTION WITH THE NORTH ANATOLIAN FAULT ZONE USING QUADRATIC DENSITY FUNCTION
Аннотация и ключевые слова
Аннотация (русский):
In this study, sedimentary basins were modeled by using the variable density contrast. In a sedimentary basin which might be modeled by a series of prisms juxtaposed with each other, density variation with depth was represented by quadratic function. The initial depths of the prisms were obtained by using the gravity anomaly of an infinite horizontal slab for the modeling. These depths were improved by taking into account the differences between the observed and calculated anomalies. The method was successfully examined on the theoretical models and then applied to Erzincan-Cayirli field data.

Ключевые слова:
North Anatolian Fault Zone, Erzincan Basin, quadratic density function, sedimentary basin, vertical prism, gravity modeling
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Akinci, A., H. Eyidogan (2000) , Scattering and anelastic attenuation of seismic energy in the vicinity of North Anatolian Fault Zone, eastern Turkey, Physics of the Earth and Planetary Interiors , 122, p. 229-239, https://doi.org/10.1016/S0031-9201(00)00196-5.

2. Aktar, M., C. Dorbath, E. Arpat (2004) , The Seismic velocity and fault structure of the Erzincan basin, Turkey, using local earthquake tomography, Geophysical Journal International Seismology, 156, p. 497-505, https://doi.org/10.1111/j.1365-246X.2004.02081.x.

3. Aktimur, H. T., T. Yildirim, M. Sariaslan, et al. (1995) , The Geology of Erzincan city's around General Directorate of Mineral Research & Exploration (M.T.A.), Report, Ankara, no. Report Number 9792, p. 43-57.

4. Ardos, M. (1996) , Quaternary geomorphology of Turkey, Cover 1, p. 116-119, Cantay Bookshop, Istanbul.

5. Athy, L. F. (1930) , Density, porosity and compaction of sedimentary rocks, Bulletin of the American Association of Petroleum Geologists, 14, p. 1-24, https://doi.org/10.1306/3D93289E-16B1-11D7-8645000102C1865D.

6. Bott, M. H. P. (1960) , The use of Rapid Digital Computing Methods for Direct Gravity Interpretation of Sedimentary Basins, Geophys. J. Int., 3, no. 1, p. 63-67, https://doi.org/10.1111/j.1365-246X.1960.tb00065.x.

7. Canbay, M. M. (1999) , Determination of the subsurface structure in the Erzincan region by using inversion and forward solutions University of Kocaeli, Journal of Applied Geosciences, 3, p. 69-80.

8. Chai, Y., W. J. Hinze (1988) , Gravity inversion of an interface above which the density contrast varies exponentially with depth, Geophysics, 53, no. 6, p. 837-845, https://doi.org/10.1190/1.1442518.

9. Chakravarthi, V., S. B. Singh, B. G. Ashok (2001) , INVER2DBASE - A program to compute basement depths of density interfaces above which the density contrast varies with depth, Computers and Geosciences, 27, p. 1127-1133, https://doi.org/10.1016/S0098-3004(01)00035-8.

10. Chakravarthi, V., N. Sundararajan (2005) , Gravity modeling of 2.5-D sedimentary basins-a case of variable density contrast, Computers and Geosciences, 31, p. 820-827, https://doi.org/10.1016/j.cageo.2005.01.018.

11. Chakravarthi, V., N. Sundararajan (2006) , Gravity anomalies of 2.5-D multiple prismatic structures with variable density: A Marquardt Inversion, Pure and Applied Geophysics, 163, p. 229-242, https://doi.org/10.1007/s00024-005-0008-8.

12. Chakravarthi, V. (2010) , LSTRKFALTG - A forward modeling program to compute theoretical gravity anomalies of strike limited listric fault structures with prescribed vertical variation in density, Computers & Geosciences, 36, p. 675-679, https://doi.org/10.1016/j.cageo.2009.09.007.

13. Chakravarthi, V., S. R. Sastry, B. Ramamma (2013) , MODTOHAFSD - A GUI based JAVA code for gravity analysis of strike limited sedimentary basins by means of growing bodies with exponential density contrast-depth variation: A space domain approach, Computers & Geosciences, 56, p. 131-141, https://doi.org/10.1016/j.cageo.2013.02.005.

14. Cordell, L. (1973) , Gravity analysis using an exponential density-depth function, San Jacinto Graben, California, Geophysics, 38, p. 684-690, https://doi.org/10.1190/1.1440367.

15. Demirmen, F. (1965) , Geology and petroleum facilities of Cayirli district (Erzincan) area. (The readers: I43b1, I43b2, I43b4), General Directorate of Mineral Research & Exploration (M.T.A.) Report, Ankara, Turkey, no. Report Number: 4062, p. 1-70.

16. Erden, F. (1979) , Applied gravity, General Directorate of Mineral Research & Exploration (M.T.A.) Publications, Ankara, Turkey, no. Number of the Training series: 21, p. 47-48.

17. Eyidogan, H. (1992) , A discussion on the characteristics of the main shock and aftershocks of the 13, March, 1992 Erzincan Earthquake, Geophysics, 6, p. 103-112.

18. Eyidogan, H. (1994) , Examination of the geophysical properties of the 13.03.1992 Erzincan Earthquake's parameters of the main shock and the aftershock and earthquake area. The Project No: 362, Technical University Research Found, Istanbul.

19. Fuenzalida, H., L. Dorbath, et al. (1997) , Source mechanism of the 1992 Erzincan earthquake, from detailed aftershock analysis and broad band body wave inversion: tectonics of the Erzincan basin and evidences of fault decoupling on the North anatolian fault, Geophysics Int. J., 129, p. 1-28, https://doi.org/10.1111/j.1365-246X.1997.tb00935.x.

20. Hudson, R. G., J. Lipka (1940) , A Manual of Mathematics, 1-10 pp., Cambridge Univ. Press, Mass.

21. Isik, M., H. Senel (2009) , 3D gravity modeling of Buyuk Menderes basin in Western Anatolia using parabolic density function, Journal of Asian Earth Sciences, 34, p. 317-325, https://doi.org/10.1016/j.jseaes.2008.05.013.

22. Kaypak, B. (2002) , Determination of 3-D velocity structure of the Erzincan Basin by local earthquake tomography, PhD. Thesis, Technical University Nature and Science Institute, Istanbul.

23. Kaypak, B., H. Eyidogan (2002) , Determination of Erzincan basin and surrounding and the upper-crust velocity structure (1D), Journal of Engineering Istanbul Technical University (ITU), 1, no. 2, p. 107-122.

24. Kaypak, B., H. Eyidogan (2005) , One-dimensional crustal structure of the Erzincan basin, Eastern Turkey and relocations of the 1992 Erzincan earthquake (Ms=6.8) aftershocksequence, Physics of the Earth and Planetary Interiors, 151, p. 1-20, https://doi.org/10.1016/j.pepi.2004.11.009.

25. Ketin, I. (1976) , A comparison between the San Andreas and the North Anatolian faults, Bulletin of the Geological Society of Turkey, 19, p. 149-154.

26. Kuscu, I., A. A. Barka, et al. (1992) , The Radon Gas (Alpha Velocity) Measurements at some faults of the North Anatolian Fault zone, Journal of Geological Engineering, 40, p. 33-40.

27. Litinsky, V. A. (1989) , Concept of effective density: Key to gravity depth determinations for sedimentary basins, Geophysics, 54, p. 1474-1482, https://doi.org/10.1190/1.1442611.

28. Martins, C., V. Barbosa, J. Silva (2010) , Simultaneous 3D depth-to-basement and density-contrast estimates using gravity data and depth control at few points, Geophysics, 75, no. 3, p. I21-I28.

29. Murty, I. V. R., D. B. Rao (1979) , Gravity anomalies of two-dimensional bodies of irregular cross-section with density contrast varying with depth, Geophysics, 44, p. 1525-1530, https://doi.org/10.1190/1.1441023.

30. Rao, D. B. (1986) , Modelling of sedimentary basins from gravity anomalies with variable density contrast, Geophysical Journal International, 84, no. 1, p. 207-212, https://doi.org/10.1111/j.1365-246X.1986.tb04353.x.

31. Rao, D. B., M. J. Prakash, N. R. Babu (1990) , 3D and 2D modelling of gravity anomalies with variable density contrast, Geophysical Prospecting, 38, p. 411-422, https://doi.org/10.1111/j.1365-2478.1990.tb01854.x.

32. Rao, D. B., M. J. Prakash, N. R. Babu (1993) , Gravity interpretation using Fourier transforms and simple geometrical models with exponential density contrast, Geophysics, 58, p. 1074-1083, https://doi.org/10.1190/1.1443491.

33. Sazhina, N., Y. N. Grushinsky (1971) , Gravity Prospecting, 411-414 pp., Mir Publishers, Moscow.

34. Silva, J., D. Costa, V. Barbosa (2006) , Gravity inversion of basement relief and estimation of density contrast variation with depth, Geophysics, 71, no. 5, p. J51-J58.

35. Silva, J., D. Santos, K. Gomes (2014) , Fast gravity inversion of basement relief, Geophysics, 79, no. 5, p. G79-G91, https://doi.org/10.1190/geo2014-0024.1.

36. Telford, W. M., L. P. Geldart, et al. (1982) , Applied Geophysics, 25 pp., Univ. Press, Cambridge.

Войти или Создать
* Забыли пароль?