THERMOHALINE STRUCTURE OF ANTARCTIC BOTTOM WATER IN THE ABYSSAL BASINS OF THE SOUTH ATLANTIC
Аннотация и ключевые слова
Аннотация (русский):
Antarctic Bottom Water (AABW) occupies the lowest ocean layer in the major part of the Atlantic. Despite the fact that this water has the same origin from the Weddell Sea, thermohaline properties of bottom layers vary strongly in different deep basins. Temperature and salinity increase along the pathways of bottom water propagation is caused by mixing of AABW with the warmer and more saline water in the overlying layers. This mixing strongly intensifies over underwater ridges; in addition, these ridges determine the pathways of bottom water spreading. Thus, the ocean topography plays the most important role in the formation of thermohaline structure of deep basins. In particular, the properties of AABW in the western and eastern parts of the South Atlantic significantly differ from each other. In this paper we compare temperature and salinity structure of the abyssal waters of the Southeast and Southwest Atlantic. We used the results of high spatial resolution modeling and hydrographic measurements for this study. We also simulated the velocity field in the bottom layer of the South Atlantic.

Ключевые слова:
Antarctic Bottom Water, deep-water processes, thermohaline structure, numerical modeling
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Banyte, D., M. Morales Maqueda, R. Hobbs, D. A. Smeed, A. Megann, S. Recalde (2018) , Geothermal Heating in the Panama Basin: 1. Hydrography of the Basin, J. Geophys. Res., 123, no. 10, p. 7382-7392, https://doi.org/10.1029/2018JC013868.

2. Bullister, J. L., R. A. Feely, R. Wanninkhoff, A. G. Dickson, D. A. Hansell, R. M. Key (2010) , Carbon dioxide, hydrographic, and chemical data obtained during the R/V Ronald H. Brown Cruise in the Atlantic Ocean on CLIVAR repeat hydrography section A13.5 (Mar. 08-Apr. 17, 2010), Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, https://doi.org/10.3334/CDIAC/otg.CLIVAR_A13.5_2010.

3. De Lavergne, C., G. Madec, J. Le mmer, A. G. Nurser, A. C. Naveira Garabato (2016) , On the consumption of Antarctic Bottom Water in the abyssal ocean, J. Phys. Oceanography, 46, no. 2, p. 635-661, https://doi.org/10.1175/JPO-D-14-0201.1.

4. Diansky, N. A., A. V. Bagno, V. B. Zalesny (2002) , Sigma model of global ocean circulation and its sensitivity to variations in wind stress, Izv. Atmosph. Oceanic Phys., 38, no. 4, p. 537-556.

5. Dickson, R. R., J. Brown (1994) , The production of North Atlantic Deep Water: Sources, rates, and pathways, J. Geophys. Res., 99, p. 12,319-12,342, https://doi.org/10.1029/94JC00530.

6. Frey, D. I., V. V. Fomin, N. A. Diansky, et al. (2017a) , New model and field data on estimates of Antarctic Bottom Water flow through the deep Vema Channel, Doklady Earth Sciences, 474, no. 1, p. 561-564, https://doi.org/10.1134/S1028334X17050026.

7. Frey, D. I., A. N. Novigatsky, M. D. Kravchishina, E. G. Morozov (2017b) , Water structure and currents in the Bear Island Trough in July-August 2017, Russ. J. Earth. Sci., 17, p. ES3003, https://doi.org/10.2205/2017ES000602.

8. Ganachaud, A., C. Wunsch (2000) , Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data, Nature, 408, p. 453-457, https://doi.org/10.1038/35044048.

9. Hogg, N., G. Siedler, W. Zenk (1999) , Circulation and variability at the Southern Boundary of the Brazil Basin, J. Phys. Oceanogr., 29, p. 145-157, https://doi.org/10.1175/1520-0485(1999)029%3C0145:CAVATS%3E2.0.CO;2.

10. Johnson, G. C. (2008) , Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes, J. Geophys. Res., 113, p. C05027, https://doi.org/10.1029/2007JC004477.

11. Jungclaus, J., M. Vanicek (1999) , Frictionally modified flow in a deep ocean channel: Application to the Vema Channel, J. Geophys. Res., 104, no. C9, p. 21,123-21,136, https://doi.org/10.1029/1998JC900055.

12. Klinck, J. M. (1995) , Thermohaline structure of an eddy-resolving North-Atlantic model: The influence of boundary conditions, J. Physical Oceanography, 25, p. 1174-1196, https://doi.org/10.1175/1520-0485(1995)025%3C1174:TSOAER%3E2.0.CO;2.

13. Large, W., S. Yeager (2009) , The global climatology of an interannually varying air-sea flux data set, Clim. Dyn., 33, p. 341-364, https://doi.org/10.1007/s00382-008-0441-3.

14. Lewis, E. L., R. G. Perkin (1981) , The Practical Salinity Scale 1978: conversion of existing data, Deep-Sea Research, 28A, no. 4, p. 307-328, https://doi.org/10.1016/0198-0149(81)90002-9.

15. Locarnini, R. A., A. V. Mishonov, J. I. Antonov, et al. (2013) , World Ocean Atlas 2013, Vol. 1: Temperature, S. Levitus (ed.), A. Mishonov (techn. ed.), 40 pp., NOAA Atlas NESDIS 73, USA (http://www.nodc.noaa.gov/OC5/indprod.ht ml).

16. Lumpkin, R., K. Speer (2007) , Global ocean meridional overturning, J. Physical Oceanography, 37, p. 2550-2562, https://doi.org/10.1175/JPO3130.1.

17. Mantyla, A. W., J. L. Reid (1983) , Abyssal characteristics of the World Ocean waters, Deep-Sea Res., Part A, 30, p. 805-833, https://doi.org/10.1016/0198-0149(83)90002-X.

18. Morozov, E. G. (2005) , Cruise 17 of R/V Akademik Sergei Vavilov in the Atlantic Ocean, Oceanology, 45, no. 3, p. 441-443.

19. Morozov, E. G., A. N. Demidov, R. Yu. Tarakanov (2008) , Transport of Antarctic waters in the deep channels of the Atlantic Ocean, Doklady Earth Sciences, 423, no. 8, p. 1286-1289, https://doi.org/10.1134/S1028334X08080230.

20. Morozov, E. G., A. N. Demidov, R. Yu. Tarakanov, W. Zenk (2010) , Abyssal Channels in the Atlantic Ocean: Water Structure and Flows, 266 pp., Springer, Dordrecht, https://doi.org/10.1007/978-90-481-9358-5.

21. Morozov, E. G., R. Yu. Tarakanov, D. I. Frey, D. G. Borisov (2018) , Currents and water structure north of the Vema Channel, Russian Journal of Earth Sciences, 18, p. ES5006, https://doi.org/10.2205/2018ES000630.

22. Morozov, E., D. . Frey, N. Diansky, V. V. Fomin (2019) , Bottom circulation in the Norwegian Sea, Russian Journal of Earth Sciences, 19, p. ES2004, https://doi.org/10.2205/2019ES000655.

23. Orsi, A. H., G. C. Johnson, J. L. Bullister (1999) , Circulation, mixing, and production of Antarctic Bottom Water, Prog. Oceanogr., 43, p. 55-109, https://doi.org/10.1016/S0079-6611(99)00004-X.

24. Orsi, A. H., S. S. Jacobs, A. L. Gordon, M. Visbeck (2001) , Cooling and ventilating the abyssal ocean, Geophys. Res. Lett., 28, p. 2923-2926, https://doi.org/10.1029/2001GL012830.

25. Sandoval, F. J., G. L. Weatherly (2001) , Evolution of the Deep Western Boundary Current of Antarctic Bottom Water in the Brazil Basin, J. Physical Oceanography, 31, no. 6, p. 1440-1460, https://doi.org/10.1175/1520-0485(2001)031%3C1440:EOTDWB%3E2.0.CO;2.

26. Sarkisyan, A. S. (1991) , Simulation of Oceanic Dynamics, Gidrometeoizdat, St. Petersburg (in Russian).

27. Zalesny, V., N. Diansky, V.  Fomin, S. N. Moshonkin, S. G. Demyshev (2012) , Numerical model of the circulation of the Black Sea and the Sea of Azov, Russ. J. Numerical Analysis Mathematical Modelling, 27, no. 1, p. 95-111, https://doi.org/10.1515/rnam-2012-0006.

28. Zalesny, V. B., G. I. Marchuk, V. I. Agoshkov, et al. (2010) , Numerical simulation of large-scale ocean circulation based on the multicomponent splitting method, Russ. J. Numerical Analysis Mathematical Modelling, 25, no. 6, p. 581-609, https://doi.org/10.1515/rjnamm.2010.036.

29. Zenk, W., N. G. Hogg (1996) , Warming trend in Antarctic Bottom Water flowing into the Brazil Basin, Deep-Sea Res. I, 43, no. 9, p. 1461-1473, https://doi.org/10.1016/S0967-0637(96)00068-4.

30. Zweng, M. M., J. R. Reagan, J. I. Antonov, et al. , World Ocean Atlas 2013, Vol. 2: Salinity, S. Levitus (ed.), A. Mishonov (techn. ed.), 39 pp., NOAA Atlas NESDIS 74, USA (http://www.nodc.noaa.gov/ OC5/indprod.html).

31. Warren, B. A., C. Wunsch (Eds.) (1981) , Deep circulation of the world ocean, Evolution of Physical Oceanography, B. A. Warren and C. Wunsch (Eds.), p. 6-41, MIT Press, Cambridge, Mass.

32. Weatherall, P., K. M. Marks, M. Jakobsson, et al. (2015) , A new digital bathymetric model of the world's oceans, Earth and Space Science, 2, no. 8, p. 331-345, https://doi.org/10.1002/2015EA000107.

33. Wüst, G. (1936) , Schichtung und Zirkulation des Atlantischen Ozeans (ed. Defant A.) Wissenschaftliche Ergebnisse, Deutsche Atlantische Expedition auf dem Forschungs - und Vermessungsschiff "Meteor" 1925-1927, Walter de Gruyter & Co., Berlin.

Войти или Создать
* Забыли пароль?