Иркутск, Россия
Иркутск, Россия
Москва, Россия
Analysis of seven near-limb coronal mass ejections (CMEs) has shown that at distances R<1.4R from the center of the Sun CMEs according to their formation can be divided into two types: type 1 CMEs and type 2 CMEs. In the case of type 1 CMEs, the frontal structure (FS) is formed by processes occurring in FS itself, which is the outer shell of the magnetic flux rope. As for type 2 CMEs, EP-CME, internal arched structures erupt, explosively expand, capture and accelerate the more distant arched structures, which merge to form the frontal structure of the type 2 CMEs.
coronal mass ejection, magnetic flux rope, coronal arched structures, flare, eruptive prominence
1. Alekseenko S.V., Dudnikova G.I., Romanov V.A., Romanov D.V., Romanov K.V. Magnetic field instabilities in the Solar convective zone. Russian J. Engineering Thermophysics. 2000, vol. 10, pp. 243–262.
2. Amari T., Luciani J.F., Mikic Z., Linker J. A twist flux rope model for coronal mass ejections and two-ribbon flare. Astrophys. J. 2000, vol. 529, pp. L49–L52. DOI: 10.1086/312444.
3. Antiochos S.K., DeVore C.R., Klimchuk J.A. A model for solar coronal mass ejections. Astrophys. J. 1999, vol. 510, pp. 485–493. DOI: 10.1086/306563.
4. Archontis V., Hood A.W. A flux emergence model for solar eruptions. Astrophys. J. 2008, vol. 674, pp. L113–L116. DOI: 10.1086/529377.
5. Bemporad A., Raymond J., Poletto G., Romoli M. A comprehensive study of the initiation and early evolution of a coronal mass ejection from ultraviolet and white-light data. Astrophys. J. 2007, vol. 655, pp. 576–590. DOI: 10.1086/509569.
6. Chen H., Zhang J., Cheng X., Ma S., Yang S., Li T. Direct observations of tether-cutting reconnection during a major solar event from 2014 February 24 to 25. Astrophys. J. Lett. 2014, vol. 797, article id. L15.
7. Eselevich V.G., Eselevich M.V. On the Formation Mechanism of the Sporadic Solar Wind. Geomagnetism and Aeronomy. 2011, vol. 51, no. 8, pp. 1083–1094.
8. Eselevich V.G., Eselevich M.V., Romanov V.A., Romanov D.V., Romanov K.V., Kucherov N.V. Physical mechanism for the generation of the coronal mass ejections from the upper layers of the convective zone. Izvestiya Krymskoj Astrofizicheskoj Observatorii. 2013, vol. 109, no. 4, pp. 54–60. (In Russian).
9. Eselevich V.G., Eselevich M.V. Physical differences between the initial phase of the formation of two types of coronal mass ejections. Astronomicheskii Zhurnal [Astronomy Reports]. 2014, vol. 91, no. 4, pp. 320–331. (In Russian).
10. Eselevich V.G., Eselevich M.V., Zimovets I.V., Rudenko G.V. Study of the initial formation stage of an impulsive coronal mass ejection. Astronomicheskii Zhurnal [Astronomy Reports]. 2016, vol. 93, no. 11, pp. 990–1002. (In Russian).
11. Eselevich V.G., Eselevich M.V. Features of the initial stage of formation of fast coronal mass ejection on February 25, 2014. Solnechno-Zemnaya Fizika [Solar-Terrestrial Physics]. 2020, vol. 6, no. 3, pp. 3–17. (In Russian).
12. Gibson S. E., Foster D., Burkepile J., de Toma G., Stanger A. The calm before the storm: the link between quiescent cavities and coronal mass ejections. Astrophys. J. 2006, vol. 641. pp. 590–605. DOI: 10.1086/500446.
13. Hundhausen A.J. Coronal mass ejections. The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission. New York, Springer, 1999, pp. 143–200.
14. Kliem B., Titov V.S., Török T. Formation of current sheets and sigmoidal structure by the kink instability of a magnetic loop. Astron. Astrophys. 2004, vol. 413, pp. L23–L26. DOI: 10.1051/0004-6361:20031690.
15. Kliem B., Török T. Torus instability. Phys. Rev. Lett. 2006, vol. 96, iss. 25, id. 255002. DOI: 10.1103/PhysRevLett.96.255002.
16. Krall J., Chen J., Santoro R. Drive mechanisms of erupting solar magnetic flux ropes. Astrophys. J. 2000, vol. 539, pp. 964–982. DOI: 10.1086/309256.
17. Lemen J.R., Title A.M., Akin D.J., Boerner P.F., Chou C., Drake J.F., Duncan D.W., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 2012, vol. 275, iss. 1-2, pp. 17–40. DOI: 10.1007/s11207-011-9776-8.
18. MacQueen R.N., Fisher R.R. The kinematic of solar inner coronal transient. Solar Phys. 1983, vol. 89, pp. 89–102. DOI: 10.1007/BF00211955.
19. Magara T., Longcope D.W. Sigmoid structure of an emerging flux tube. Astrophys. J. 2001, vol. 559, iss. 1, pp. L55–L59. DOI: 10.1086/323635.
20. Moore R.L., Sterling A.C., Hudson H.S., Lemen J.R. onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 2001, vol. 552, pp. 833–848. DOI: 10.1086/320559.
21. Moreno-Insertis F., Schussler M., Ferriz-Mas A. Storage of magnetic flux tubes in a convective overshoot. Astron. Astrophys. 1992, vol. 264, pp. 686–700.
22. Patsourakos S., Vourlidas A., Stenborg G. Direct evidence for a fast coronal mass ejection driven by the prior formation and subsequent destabilization of a magnetic flux rope. Astrophys. J. 2013, vol. 764, article id. 125. DOI: 10.1088/0004-637X/764/2/125.
23. Romanov V.A., Romanov D.V., Romanov K.V. Fault of magnetic fields from the dynamo action region into the atmosphere of the Sun. Astronomicheskii Zhurnal [Astronomy Reports]. 1993a, vol. 70, pp. 1237–1246. (In Russian).
24. Romanov V.A., Romanov D.V., Romanov K.V. Fault of magnetic fields from the solar dynamo action region into the relaxation zone. Astronomicheskii Zhurnal [Astronomy Reports]. 1993b, vol. 70, pp. 1247–1256. (In Russian).
25. Schmieder B., Démoulin P., Aulanier G. Solar filament eruptions and their physical role in triggering coronal mass ejections. Adv. Space Res. 2013, vol. 51, pp. 1967–1980. DOI: 10.1016/j.asr.2012.12.026.
26. Sharykin I.N., Zimovets I.V., Myshyakov I.I. Flare Energy Release at the Magnetic Field Polarity Inversion Line during the M1.2 Solar Flare of 2015 March 15. II. Investigation of Photospheric Electric Current and Magnetic Field Variations Using HMI 135 s Vector Magnetograms. Astrophys. J. 2020, vol. 893, iss. 2, 159. DOI: 10.3847/1538-4357/ab84ef.
27. Sheeley N.R. Jr., Walters J.H., Wang Y.-M., Howard R.A. Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. J. Geophys. Res. 1999, vol. 104, no. A11, pp. 24739–24768. DOI: 10.1029/1999JA900308.
28. Shen Y., Liu Y., Su J. Sympathetic partial and full filament eruptions observed in one solar breakout event. Astrophys. J. 2012, vol. 750, article id. 12. DOI: 10.1088/0004-637X/750/1/12.
29. Sterling A.C., Moore R.L. Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset. Astrophys. J. 2005, vol. 630, pp. 1148–1159. DOI: 10.1086/432044.
30. Thernisien A., Vourlidas A., Howard R.A. Forward modeling of Coronal Mass Ejection using STEREO/SECCHI data. Solar Phys. 2009, vol. 256, pp. 111–130. DOI: 10.1007/s11207-009-9346-5.
31. Vršnak, B., Sudar D., Ruzdjak D. The CME-flare relationship: Are there really two types of CME? Astron. Astrophys. 2005, vol. 435, pp. 1149–1109. DOI: 10.1051/0004-6361: 20042166.
32. Zhang J., Wang J., Deng Y., Wu D. Magnetic Flux Cancellation Associated with the Major Solar Event on 2000 July 14. Astrophys. J. 2001, vol. 548, pp. L99–L102. DOI: 10.1086/318934.
33. Zhang J., Dere K.P. A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 2006, vol. 649, pp. 1100–1109. DOI: 10.1086/506903.
34. URL: http://cdaw.gsfc.nasa.gov/CME_list (accessed December 15, 2021).