ВЛИЯНИЕ ФИТОВЕЩЕСТВ НА БИОХИМИЧЕСКИЙ СОСТАВ МЫШЕЧНОЙ ТКАНИ ЦЫПЛЯТ-БРОЙЛЕРОВ
Рубрики: БИОЛОГИЯ
Аннотация и ключевые слова
Аннотация (русский):
Аннотация. Цель исследования – оценка влияния фитовеществ на биохимический состав мышечной ткани цыплят-бройлеров. Методы исследований: атомно-эмиссионной спектрометрия, капиллярный электрофорез, газохроматография. Научная новизна. Впервые проведена оценка влияния фитовеществ (гамма-окталактона, ванилиновой кислоты) на биохимический состав мышечной ткани цыплят-бройлеров. Результаты. Биохимический состав мышечной ткани характеризовался более низким содержанием аминокислот: тирозина (грудные мышцы), лизина, треонина, аланина, лейцина + изолейцина (бедренные мышцы) во II группе (P ≤ 0,05), и высоким валина и гистидина (грудные мышцы) в I группе (P ≤ 0,05) в сравнении с контролем. Также установлено увеличение концентрации жирных кислот в грудной мышце (P ≤ 0.05): миристиновой и арахиновой (I и II), стеариновой (III), линолевой (II и III); снижением пальмитиновой (III) и пальмитоолеиновой (II и III). В бедренных мышцах установлено увеличение концентрации миристиновой (III группа, P ≤ 0,05), олеиновой (II группа, P ≤ 0,05) жирных кислот. У цыплят-бройлеров I группы в грудной мышце снизились (P ≤ 0,05) концентрации макроэлементов (Са, P, K, Na) и микроэлементов (В, Fei). Во II группе установлено увеличение (P ≤ 0,05) Ca, Co, Mn, Zn, в III – Fe (P ≤ 0,05). В бедренной мышечной ткани I группы снизились (P ≤ 0,05) концентрации макроэлементов K, Mg и увеличились (P ≤ 0,05) Na, Ca, B, Cu, Ni, I, Zn. Во II группе увеличилось (P ≤ 0,05) содержание B, а в III, наоборот, обнаружено снижение (P ≤ 0.05) Ca и K. Таким образом, использование ванилиновой кислоты в отдельности или в сочетании с гамма-лактоном способствует повышению биологической ценности мышечной ткани цыплят-бройлеров в части увеличения ряда незаменимых аминокислот, ненасыщенных жирных кислот и важных макро- и микроэлементов.

Ключевые слова:
фитовещества, ванилиновая кислота, гамма-лактон, мышечная ткань, цыплята-бройлеры
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Kikusato M. Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity // Animal Bioscience. 2021. Vol. 34 (3). Pp. 345–353. DOI: 10.5713/ab.20.0842.

2. Basit M.A., Kadir A.A., Loh T.C. et al. Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens // Animals (Basel). 2020. Vol. 10 (11). Article number 2150. DOI: 10.3390/ani10112150.

3. Gilani S. M. H., Rashid Z, Galani S. et al. Growth performance, intestinal histomorphology, gut microflora and ghrelin gene expression analysis of broiler by supplementing natural growth promoters: A nutrigenomics approach // Saudi Journal of Biological Sciences. 2021. Vol. 28 (6). Pp. 3438–3447. DOI: 10.1016/j.sjbs.2021.03.008.

4. Iwiński H., Wódz K., Chodkowska K. et al. In Vitro Evaluation of Antimicrobial Effect of Phytobiotics Mixture on Salmonella spp. Isolated from Chicken Broiler [e-resource] // Antibiotics (Basel). 2022. Vol. 11 (7). Article number 868. DOI: 10.3390/antibiotics11070868.

5. Ogbuewu I. P., Okoro V. M., Mbajiorgu C. A. Meta-analysis of the influence of phytobiotic (pepper) supplementation in broiler chicken performance // Tropical Animal Health and Production. 2020. Vol. 52 (1). Pp. 17–30. DOI: 10.1007/s11250-019-02118-3.

6. Abd El-Hack M. E., El-Saadony M. T., Elbestawy A. R. et al. Hot red pepper powder as a safe alternative to antibiotics in organic poultry feed: an updated review [e-resource] // Poultry Science. 2022. Vol. 101 (4). Article number 101684. DOI: 10.1016/j.psj.2021.101684.

7. Lee A., Dal Pont G. C., Farnell M. B. et al. Supplementing chestnut tannins in the broiler diet mediates a metabolic phenotype of the ceca [e-resource] // Poultry Science. 2021. Vol. 100 (1). Pp. 47–54. DOI: 10.1016/j.psj.2020.09.085.

8. Ali U., Naveed S., Qaisrani S. N. et al. Characteristics of Essential Oils of Apiaceae Family: Their Chemical Compositions, in vitro Properties and Effects on Broiler Production [e-resource] // Poultry Science. 2022. Vol. 59 (1). Pp. 16–37. DOI: 10.2141/jpsa.0210042.

9. Kikusato M., Xue G., Pastor A. et al. Effects of plant-derived isoquinoline alkaloids on growth performance and intestinal function of broiler chickens under heat stress // Poultry Science. 2021. Vol. 100 (2). Pp. 957–963. DOI: 10.1016/j.psj.2020.11.050.

10. Aljumaah M. R., Suliman G. M., Abdullatif A. A. et al. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium // Poultry Science. 2020. Vol. 99 (11). Pp. 5744–5751. DOI: 10.1016/j.psj.2020.07.033.

11. Abdul Basit M., Abdul Kadir A., Loh T.C. et al. Effects of Inclusion of Different Doses of Persicaria odorata Leaf Meal (POLM) in Broiler Chicken Feed on Biochemical and Haematological Blood Indicators and Liver Histomorphological Changes [e-resource] // Animal Bioscience. 2020. Vol. 10 (7). Article number 1209. DOI: 10.3390/ani10071209.

12. Ripon M. M. R., Rashid M. H., Rahman M. M. et al. Dose-dependent response to phytobiotic supplementation in feed on growth, hematology, intestinal pH, and gut bacterial load in broiler chicken [e-resource] // Journal of Advanced Veterinary and Animal Research. 2019. Vol. 6 (2). Pp. 253–259. DOI: 10.5455/javar.2019.f341.

13. Olukosi O. A., Dono N. D. Modification of digesta pH and intestinal morphology with the use of benzoic acid or phytobiotics and the effects on broiler chicken growth performance and energy and nutrient utilization // Journal of Animal Science. 2014. Vol. 92 (9). Pp. 3945–3953. DOI: 10.2527/jas.2013-6368.

14. Ren H., Vahjen W., Dadi T. et al. Effects of Probiotics and Phytobiotics on the Intestinal Microbiota in Young Broiler Chicken // Microorganisms. 2019. Vol. 7 (12). Article number 684. DOI: 10.3390/microorganisms7120684.

15. Hussein E. O. S., Ahmed S.H., Abudabos A. M. et al. Effect of Antibiotic, Phytobiotic and Probiotic Supplementation on Growth, Blood Indices and Intestine Health in Broiler Chicks Challenged with Clostridium perfringens // Animals (Basel). 2020. Vol. 10 (3). Article number 507. DOI: 10.3390/ani10030507.

16. Ferdous M. F., Arefin M. S., Rahman M. M. et al. Beneficial effects of probiotic and phytobiotic as growth promoter alternative to antibiotic for safe broiler production [e-resource] // Journal of Advanced Veterinary and Animal Research. 2019. Vol. 6 (3). Pp. 409–415. DOI: 10.5455/javar.2019.f361.

17. Duskaev G., Rakhmatullin, S., Kvan O. Effects of bacillus cereus and coumarin on growth performance, blood biochemical parameters, and meat quality in broilers [e-resource] // Veterinary World. 2020. Vol. 13 (11). Pp. 2484–2492. DOI: 10.14202/VETWORLD.2020.2484-2492.

18. Tavangar P., Gharahveysi S., Rezaeipour V. et al. Efficacy of phytobiotic and toxin binder feed additives individually or in combination on the growth performance, blood biochemical parameters, intestinal morphology, and microbial population in broiler chickens exposed to aflatoxin B1 [e-resource] // Tropical Animal Health and Production. 2021. Vol. 53 (3). Article number 335. DOI: 10.1007/s11250-021-02778-0.

19. Armanini E. H., Boiago M. M., de Oliveira P. V. et al. Inclusion of a phytogenic bend in broiler diet as a performance enhancer and anti-aflatoxin agent: Impacts on health, performance, and meat quality [e-resource] // Research in Veterinary Science. 2021. Vol. 137. Pp. 186–193. DOI: 10.1016/j.rvsc.2021.05.004.

20. Krauze M., Cendrowska-Pinkosz M., Matuseviĉius P. et al. The Effect of Administration of a Phytobiotic Containing Cinnamon Oil and Citric Acid on the Metabolism, Immunity, and Growth Performance of Broiler Chickens // Animals (Basel). 2021. Vol. 11 (2). Article number 399. DOI: 10.3390/ani11020399.

21. Erdoğan Z., Erdoğan S., Aslantaş Ö. et al. Effects of dietary supplementation of synbiotics and phytobiotics on performance, caecal coliform population and some oxidant/antioxidant parameters of broilers [e-resource] // Journal of Animal Physiology and Animal Nutrition. 2010. Vol. 94 (5). Article number e40-8. DOI: 10.1111/j.1439-0396.2009.00973.x.

22. Karimov I., Kondrashova K., Duskaev G. et al. Evaluation of effects of rumen fluid in combination with probiotic preparations and vanillin on the luminescence of a recombinant strain E. coli // Paper presented at the E3S Web of Conferences. 2020. Vol. 143. DOI: 10.1051/e3sconf/202014302034.

23. Rempe, C. S.; Burris, K. P.; Lenaghan, S. C. et al. The potential of systems biology to discover antibacterial mechanisms of plant phenolics [e-resource] // Frontiers in Microbiology. 2017. Vol. 8. Article number 422. DOI: 10.3389/fmicb.2017.00422.

24. Pisoschi A. M., Pop A., Georgescu C. et al. An overview of natural antimicrobials role in food // European Journal of Medicinal Chemistry. 2018. Vol. 143. Pp. 922–935. DOI: 10.1016/j.ejmech.2017.11.095.

25. Konkol D., Korzeniowska M., Różański H. et al. The Use of Selenium Yeast and Phytobiotic in Improving the Quality of Broiler Chicken Meat [e-resource] // Foods. 2021. Vol. 10 (11). Article number 2558. DOI: 10.3390/foods10112558.

26. Al-Yasiry A. R. M., Kiczorowska B., Samolińska W. Effect of Boswellia serrata Resin Supplementation on Basic Chemical and Mineral Element Composition in the Muscles and Liver of Broiler Chickens // Biological Trace Element Research. 2017. Vol. 179 (2). Pp. 294–303. DOI: 10.1007/s12011-017-0966-6.

27. Zając M., Kiczorowska B., Samolińska W. et al. Supplementation of Broiler Chicken Feed Mixtures with Micronised Oilseeds and the Effects on Nutrient Contents and Mineral Profiles of Meat and Some Organs, Carcass Composition Parameters, and Health Status // Animals (Basel). 2022. Vol. 12 (13). Article number 1623. DOI: 10.3390/ani12131623.

28. Adaszynska-Skwirzynska M, Szczerbinska D. The effect of lavender (Lavandula angustifolia) essential oil as a drinking water supplement on the production performance, blood biochemical parameters, and ileal microflora in broiler chickens // Poultry Science. 2019. Vol. 98 (1). Pp. 358–365. DOI: 10.3382/ps/pey385.

Войти или Создать
* Забыли пароль?